Details

Title

Modeling and analysis of energy and exergy performance of a PCM-augmented concrete-based Trombe wall systems

Journal title

Archive of Mechanical Engineering

Yearbook

2022

Volume

vol. 69

Issue

No 2

Affiliation

Ezurike, Benjamin O. : Department of Mechanical/Mechatronics Engineering, Alex Ekwueme Federal University Ndufu-Alike, Nigeria ; Ajah, Stephen A. : Department of Mechanical/Mechatronics Engineering, Alex Ekwueme Federal University Ndufu-Alike, Nigeria ; Nwokenkwo, Uchenna : Department of Mechanical/Mechatronics Engineering, Alex Ekwueme Federal University Ndufu-Alike, Nigeria ; Okoronkwo, Chukwunenye A. : Department of Mechanical/Mechatronics Engineering, Alex Ekwueme Federal University Ndufu-Alike, Nigeria

Authors

Keywords

Trombe wall ; boundary condition ; thermal storage ; simulation

Divisions of PAS

Nauki Techniczne

Coverage

245-257

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] I. Blasco Lucas, L. Hoesé, and D. Pontoriero. Experimental study of passive systems thermal performance. Renewable Energy, 19(1-2):39–45, 2000. doi: 10.1016/S0960-1481(99)00013-0.
[2] A. Mastrucci. Experimental and Numerical Study on Solar Walls for Energy Saving, Thermal Comfort and Sustainability of Residential Buildings. Ph.D. Thesis, University Politecnica delle Marche, Italy, 2013.
[3] A. Chel, J.K. Nayak, and G. Kaushik. Energy conservation in honey storage building using Trombe wall. Energy and Building, 40(9):1643–1650, 2008. doi: 10.1016/j.enbuild.2008.02.019.
[4] L. Zalewski, A. Joulin, S. Lassue, Y. Dutil, and D. Rousse. Experimental study of small-scale solar wall integrating phase change material. Solar Energy, 86(1):208–219, 2012. doi: 10.1016/j.solener.2011.09.026.
[5] C.M. Lai and C.M. Chiang. How phase change materials affect thermal performance: hollow bricks. Building Research & Information, 34(2):118–130, 2011. doi: 10.1080/09613210500493197.
[6] K. Sankaranarayanan, H.J. van der Kooi, and J. de Swaan Arons. Efficiency and Sustainability in the Energy and Chemical Industries. Scientific Principles and Case Studies. CRC Press, Boca Raton, 2010. doi: 10.1201/EBK1439814703.
[7] F. Kuznik and J. Virgone. Experimental assessment of a phase change material for wall building use. Applied Energy, 86(10):2038–2046, 2009. doi: 10.1016/j.apenergy.2009.01.004.
[8] D. Feldman, M.M. Shapiro, D. Banu, and C.J. Fuks. Fatty acids and their mixtures as phase-change materials for thermal energy storage. Solar Energy Materials, 18(3-4):201–216, 1989. doi: 10.1016/0165-1633(89)90054-3.
[9] W.I. Okonkwo and C.O. Akubuo. Trombe wall system for poultry brooding. International Journal of Poultry Science, 6(2):125–130, 2007. doi: 10.3923/ijps.2007.125.130.
[10] L. Cao, F. Tang, and G. Fang. Synthesis and characterization of microencapsulated paraffin with titanium dioxide shell as shape-stabilized thermal energy storage materials in buildings. Energy and Buildings, 72:31–37, 2014. doi: 10.1016/j.enbuild.2013.12.028.
[11] F. Abbassi and L. Dehmani. Experimental and numerical study on thermal performance of an unvented Trombe wall associated with internal thermal fins. Energy and Buildings, 105:119–128, 2015. doi: 10.1016/j.enbuild.2015.07.042.
[12] M.J. Huang, P.C. Eames, and N. J. Hewitt. The application of a validated numerical model to predict the energy conservation potential of using phase change materials in the fabric of a building. Solar Energy Materials and Solar Cells, 90(13):1951–1960, 2006. doi: 10.1016/j.solmat.2006.02.002.
[13] S.A. Ajah, B.O. Ezurike, and H.O. Njoku. A comparative study of energy and exergy performances of a PCM-augmented cement and fired-brick Trombe wall systems. International Journal of Ambient Energy, 1–18, 2020. doi: 10.1080/01430750.2020.1718753.
[14] H.O. Njoku, B.E. Agashi, and S.O. Onyegegbu. A numerical study to predict the energy and exergy performances of a salinity gradient solar pond with thermal extraction. Solar Energy, 157:744–761, 2017. doi: 10.1016/j.solener.2017.08.079.
[15] C. Ji, Z. Qin, S. Dubey, F.H. Choo, and F. Duan. Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow. Applied Energy, 205:1–12, 2017. doi: 10.1016/j.apenergy.2017.07.101.

Date

31.03.2022

Type

Article

Identifier

DOI: 10.24425/ame.2022.140411
×