Details

Title

High-resolution mapping to assess risk of groundwater pollution by nitrates from agricultural activities in Wielkopolska Province, Poland

Journal title

Archives of Environmental Protection

Yearbook

2022

Volume

vol. 48

Issue

No 1

Affiliation

Zabłocki, Sebastian : University of Warsaw, Poland ; Trzeciak, Joanna Alicja : University of Warsaw, Poland ; Murat-Błażejewska, Sadżide : Poznan University of Life Sciences, Poland ; Błażejewski, Ryszard : Poznan University of Life Sciences, Poland

Authors

Keywords

shallow groundwaters ; nitrates ; DRASTIC based methods ; Wielkopolska (Greater Poland) ; vulnerability/pollution risk

Divisions of PAS

Nauki Techniczne

Coverage

41-57

Publisher

Polish Academy of Sciences

Bibliography

  1. Air quality monitoring, www.powietrze.gios.gov.pl, access on 04.2021
  2. Al-Adamat, R., Foster, I. & Baban, S.M.J. (2003). Groundwater vulnerability mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, remote sensing and DRASTIC, Applied Geography, 23, 4, pp. 303-324.
  3. Alam, F., Umar, R., Ahmed, S. & Dar, F. A. (2014). A new model (DRASTIC-LU) for evaluating groundwater vulnerability in parts of central Ganga Plain, India. Arabian Journal of Geosciences. DOI:10.1007/s12517-012-0796-y
  4. Aller, L., Bennett, T., Lehr, J.H., Petty, R.J. & Hackett, G. (1987). DRASTIC: a standardized system for evaluating ground water pollution potential using hydrogeologic settings. EPA-600/2-87-035, EPA, Washington, DC.
  5. Babiker, I.S., Mohammed, M.A.A., Hiyama, T. & Kato, K. (2005). A GIS – based DRASTIC model for assessing aquifer vulnerability in Kakamigahara Heights. Gifu Prefecture central Japan. Science of the Total Environment, 345, pp. 127-140.
  6. Bojarczuk, A., Jelonkiewicz, E., Jelonkiewicz, Ł. & Lenart-Boroń, A. (2019). Changes in the quality of shallow groundwater in agriculturally used catchment in the Wiśnickie Foothills (Southern Poland), Archives of Environmental Protection, 45, 1, pp. 19–25. DOI:10.24425/aep.2019.126420
  7. Central Hydrogeological Data Bank, Groundwater Bodies characteristics, Major Groundwater Reservoirs, www.pgi.gov.pl, access on 03.2021
  8. Corine Land Cover, 2018, https://clc.gios.gov.pl, access on 04.2021
  9. Dąbrowski, S., Przybyłek, J. & Górski, J. (2007). Warta lowland subregion, [in] Paczyński, B.  Sadurski, A., (Eds), Regional hydrogeology of Poland, Państwowy Instytut Geologiczny, Warsaw. (in Polish)
  10. Dąbrowski, S., Rynarzewski, W., Straburzyńska–Janiszewska, R., Janiszewska, B. & Pawlak, A. (2009). Identification of groundwater level changes due to anthropopression in the Warta water region, Biuletyn Państwowego Instytutu Geologicznego, 436, pp. 77-86. (in Polish)
  11. Digital Elevation Model, resolution 100100 m, www.gugik.gov.pl, access on 03.2021
  12. Dragon, K. & Górski, J. (2015). Identification of groundwater chemistry origins in a regional aquifer system (Wielkopolska region, Poland). Environ Earth Sci. 73: pp. 2153–2167. DOI:10.1007/s12665-014-3567-0
  13. Dragon, K. (2013). Groundwater nitrate pollution in the recharge zone of a regional Quaternary flow system (Wielkopolska region, Poland). Environ Earth Sci. 68: pp. 2099–2109. DOI:10.1007/s12665-012-1895-5
  14. Duda, R., Witczak, S. & Żurek, A. (2011). Groundwater Vulnerability Map of Poland in scale 1:500 000. Ministry of the Environment. Cracow.
  15. Fiszer, J. & Derkowska-Sitarz, M. (2010). Forecast of development of depression cone and water inflows to Brown Coal Mine Konin including designed open pits Tomisławice and Ościsłowo, Biuletyn Państwowego Instytutu Geologicznego, 442: pp. 37-41. (in Polish)
  16. Galon, R. (1961). Morphology of the Noteć - Warta (or Toruń - Eberswalde) ice marginal streamway. Geographical Studies, Polish Academy of Sciences. Institute of Geography; no. 29, IGiPZ PAN; Wydaw. Geologiczne, Warsaw.
  17. Hydrogeological Map of Poland in the scale 1:50 000, Uppermost Aquifer, Vulnerability and Quality; Hydrogeological Map of Poland in the scale of 1:50 000, Uppermost Aquifer, Hydrodynamics and Occurrence, Geological Map of Poland in the scale 1:50 000, www.geoportal.pgi.gov.pl, access on 04.2021
  18. Jamorska, I. (2015). Conditions for the occurrence of groundwater in southern Kujawy Region, Przegląd Geologiczny, 63, 10/1: pp. 756-761. (in Polish)
  19. Krogulec, E. (2004). Vulnerability Assessment of Groundwater Pollution in the River Valley on the Basis of Hydrodynamic Evidences. Wydawnictwo UW, Warszawa, Poland. (in Polish)
  20. Krogulec, E. (2011). Intrinsic and specific vulnerability of groundwater in a river valley. Biuletyn Państwowego Instytutu Geologicznego 445, 337–344. (in Polish)
  21. Ławniczak, A.E., Zbierska, J., Nowak, B., Achtenberg, K., Grześkowiak, A. & Kanas, K. (2016). Impact of agriculture and land use on nitrate contamination in groundwater and running waters in central-west Poland. Environ Monit. Assess., 188, 172. DOI:10.1007/s10661-016-5167-9
  22. Local database, NUTS 5, https://stat.gov.pl, access on 04.2021
  23. Map of soil types on a scale of 1:500 000 (updated 2005-2010), www.iung.pl, access on 05.2021
  24. Margat, J. (1968). Groundwater Vulnerability Maps, Conception-Estimation-Mapping; EEC Institut Europeen de l’ Eau: Paris, 1968.
  25. Martínez-Bastida, J.J., Arauzo, M. & Valladolid, M. (2010) Intrinsic and specific vulnerability of groundwater in central Spain: the risk of nitrate pollution. Hydrogeology Journal, 18, pp. 681–698.
  26. Monitoring Data Base – MONBADA, gios.gov.pl, access on 04.2021
  27. Napolitano, P. & Fabbri, A.G. (1996). Single-parameter sensitivity analysis for aquifer vulnerability assessment using DRASTIC and SINTACS, Application of Geographic Information Systems in Hydrology and Water Resources Management (Proceedings of the Vienna Conference), IAHS Publ. no. 235, pp. 559–566.
  28. NUTS 5 = LAU: Local Administrative Units, https://ec.europa.eu/, access on 05.2021
  29. Perrin, J., Pochon, A., Jeannin P.Y. & Zwahlen, F. (2004). Vulnerability assessment in karstic areas: validation by field experiments. Environmental Geology, 46:237–245. DOI:10.1007/s00254-004-0986-3
  30. Regulation of the Council of Ministers of February 14, 2020 on the adoption of the "Action Program to reduce water pollution with nitrates from agricultural sources and to prevent further pollution". Journal of Laws 2020. 243, www.isap.sejm.gov.pl, access on 07.2021. (in Polish)
  31. Regulation of the Director of Regional Water Management Authority in Poznań of July 12, 2012 on the determination of waters in the Warta water region, within the boundaries of the Wielkopolska Province, sensitive to pollution with nitrogen compounds from agricultural sources and particularly vulnerable areas, from which the outflow of nitrogen from agricultural sources to these waters should be limited. Journal of Laws of the Wielkopolska Province 2012.3143; https://poznan.wody.gov.pl/; access on 05.2021. (in Polish)
  32. Regulation of the Minister of the Environment of December 23, 2002 on the criteria for determining waters sensitive to pollution with nitrogen compounds with agricultural sources (2002). Journal of Laws 2002. 241. 2093, www.isap.sejm.gov.pl, access on 04.2021. (in Polish)
  33. Report on the implementation of Directive 91/676/EEC in the years 2016 – 2020 (2021). Ministry of Maritime Economy and Inland Navigation, https://www.gov.pl/attachment/b0a430f6-0555-4b0c-ab82-70d46ae1ffbc, access on 07.2021. (in Polish)
  34. Saha, D. & Alam, F. (2014). Groundwater vulnerability assessment using DRASTIC and Pesticide DRASTIC models in intensive agriculture area of the Gangetic plains, India. Environmental Monitoring and Assessment. DOI: 10.1007/s10661-014-4041-x
  35. Sarkar, M. & Pal, S.C. (2021). Application of DRASTIC and Modified DRASTIC models for modeling groundwater vulnerability of Malda District in West Bengal. J. of the Indian Society of Remote Sensing, 49(5), pp. 1201–1219. DOI: 10.1007/s12524-020-01176-7
  36. Secunda, S., Collin, M. L. & Melloul, A. J. (1998). Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel’s Sharon region. Journal of Environmental Management. DOI: 10.1006/jema.1998.0221
  37. Shirazi, S.M., Imran, H.M. & Akib, S. (2012). GIS-based DRASTIC method for groundwater vulnerability assessment: a review, Journal of Risk Research, 15:8, 991-1011, DOI:10.1080/13669877.2012.686053
  38. Stewart, B.A., Viets, F.G. Jr. & Hutchinson, G.L. (1968). Agriculture’s effect on nitrate pollution of groundwater. J. Soil Water Conserv. 23, pp. 13–15.
  39. Szczepański, J. & Straburzyńska – Janiszewska, R. (2011). Forecast of the extent of the depression for the coal open pit Mąkoszyn – Grochowiska KWB „Konin” S.A., Biuletyn Państwowego Instytutu Geologicznego 445: 671-684. (in Polish)
  40. Voudouris, K., Mandrali, P. & Kazakis, N. (2018). Preventing groundwater pollution using vulnerability and risk mapping: the case of the Florina Basin, NW Greece. Geosciences 8(4), 129. DOI:10.3390/geosciences8040129
  41. Voutchkova, D.D., Schullehner, J., Rasmussen, P. & Hansen, B. (2021). A high-resolution nitrate vulnerability assessment of sandy aquifers (DRASTIC-N). Journal of Environmental Management 277, 11133.0.
  42. Vrba, J. & Zaporozec, A. (1994). Guidebook on mapping groundwater vulnerability. International Association of Hydrogeologists (International Contributions to Hydrogeology 16). Verlag Heinz Heise, Hannover.
  43. Wiatkowski, M., Wiatkowska, B., Gruss, Ł., Rosik-Dulewska, C., Tomczyk, P., Chłopek, D. (2021) Assessment of the possibility of implementing small retention reservoirs in terms of the need to increase water resources, Archives of Environmental Protection, 47, 1, pp. 80–100, DOI 10.24425/aep.2021.136451
  44. Wrzesiński, D. & Perz, A. (2016). Features of the river runoff regime in the Warta catchment area. Bad. Fizjograf., R. 7, Ser. A – Geogr. Fiz. (A67), PTPN, Poznań, pp. 289–304. (in Polish)
  45. Yang, J., Tang, Z., Jiao, T. & Muhammad, A.M. (2017). Combining AHP and genetic algorithms approaches to modify DRASTIC model to assess groundwater vulnerability: a case study from Jianghan Plain, China. Environ Earth Sci., 76, 426 (2017). DOI:10.1007/s12665-017-6759-6 .

Date

07.03.2022

Type

Article

Identifier

DOI: 10.24425/aep.2022.140544

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×