Details

Title

The land surface deformation caused by the liquidation of the Anna mine by flooding

Journal title

Archives of Environmental Protection

Yearbook

2022

Volume

vol. 48

Issue

No 1

Affiliation

Dudek, Mateusz : Strata Mechanics Research Institute, Polish Academy of Sciences, ul. Reymonta 27, 30-059 Cracow, Poland ; Tajduś, Krzysztof : Strata Mechanics Research Institute, Polish Academy of Sciences, ul. Reymonta 27, 30-059 Cracow, Poland ; Rusek, Janusz : Faculty of Mining Surveying and Environmental Engineering, AGH University of Science and Technology, al. Mickiewicza 30, 30-059 Cracow, Poland

Authors

Keywords

mine closure ; mine flooding ; land surface uplift ; flooding scenarios ; prediction

Divisions of PAS

Nauki Techniczne

Coverage

100-108

Publisher

Polish Academy of Sciences

Bibliography

  1. Álvarez, R., Ordóñez, A., De Miguel, E. & Loredo, C. (2016). Prediction of the flooding of a mining reservoir in NW Spain. Journal of Environmental Management, 184, 219–228. DOI: 10.1016/j.jenvman.2016.09.072
  2. Baglikow, V. (2011). Damage-relevant effects of mine water recovery – conclusions from the Erkelenz hard coal district. Markscheidewesen, 118, 10–16.
  3. Bekendam, R.F. & Pöttgens, J.J.E. (1995). Ground movements over the coal mines of southern Limburg, The Netherlands, and their relation to rising mine waters. 5tfh International Symposium on Land Subsidence, 3–12.
  4. Blachowski, J., Cacoń, S., & Milczarek, W. (2009). Analysis of post-mining ground deformations caused by underground coal extractions in complicated geological conditions. Acta Geodyn. Geomater, 6(3), 351–357.
  5. Caro Cuenca, M., Hooper, A.J. & Hanssen, R.F. (2013). Surface deformation induced by water influx in the abandoned coal mines in Limburg, The Netherlands observed by satellite radarinterferometry. Journal of Applied Geophysics, 88, 1–11. DOI: 10.1016/j.jappgeo.2012.10.003
  6. Devleeschouwer, X., Declercq, P.Y., Flamion, B., Brixko, J., Timmermans, A. & Vanneste, J. (2008). Uplift revealed by radar interferometry around Liège (Belgium): a relation with rising mining groundwater. Proceedings of Post-Mining 2008, 1–13.
  7. Dudek, M., Rusek, J., Tajduś, K. & Słowik, L. (2021). Analysis of steel industrial portal frame building subjected to loads resulting from land surface uplift following the closure of underground mines. Archives of Civil Engineering, 67(3). Dudek, M., & Tajduś, K. (2021). FEM for prediction of surface deformations induced by flooding of steeply inclined mining seams. Geomechanics for Energy and the Environment, 100254. DOI: 10.1016/j.gete.2021.100254
  8. Dudek, M., Tajduś, K., Misa, R. & Sroka, A. (2020). Predicting of land surface uplift caused by the flooding of underground coal mines – A case study. International Journal of Rock Mechanics and Mining Sciences, 132, 104377. DOI: 10.1016/j.ijrmms.2020.104377
  9. Fenk, J. (2000). An analytical solution for calculating urface heave when flooding underground mine workings , 107, 4220–4422.
  10. Gudmundsson, A., Simmenes, T.H., Larsen, B. & Philipp, S.L. (2010). Effects of internal structure and local stresses on fracture propagation, deflection, and arrest in fault zones. Journal of Structural Geology, 32(11), 1643–1655. DOI: 10.1016/j.jsg.2009.08.013
  11. Heitfeld, K., Heitfeld, M., Rosner, P. & Sahl, H. (2003). Controlled mine water increase in Aachen and Sudlimburg stone coal district. 5. Aachener Bergschandemkundliches Kolloquium, 71–85. (in German)
  12. Heitfeld, M., Rosner, P. & Mühlenkamp, M. (2016). Gutachten zu den Bodenbewegungen im Rahmen des stufenweisen Grubenwasseranstiegs in den Wasserprovinzen Reden und
  13. Duhamel. Bewertung des Einwirkungspotentials und Monitoring Konzept-Anstieg bis – 320 m NHN.
  14. Heitfeld, M., Rosner, P., Mühlenkamp, M. & Sahl, H. (2004). Bergschäden im Erkelenzer Steinkohlenrevier. 4. Altbergbaukolloquium, 281–295.
  15. Jakubick, A., Jenk, U. & Kahnt, R. (2002). Modelling of mine flooding and consequences in the mine hydrogeological environment: flooding of the Koenigstein mine, Germany. Environmental Geology, 42(2–3), 222–234. DOI: 10.1007/s00254-001-0492-9
  16. Jewartowski, T., Mizerka, J. & Mróz, C. (2015). Coal-Mine Liquidation as a Strategic Managerial Decision: a Decision-Making Model Based on the Options Approach / Archives of Mining Sciences, 60(3), 697–713. DOI: 10.1515/amsc-2015-0046 (in Polish)
  17. John, A. (2021). Monitoring of Ground Movements Due to Mine Water Rise Using Satellite-Based Radar Interferometry – A Comprehensive Case Study for Low Movement Rates in the German Mining Area Lugau/Oelsnitz. Mining, 1(1), 35–58. DOI: 10.3390/mining1010004
  18. Knothe, S. (1984). Prognozowanie wpływów eksploatacji górniczej. Wydawnictwo Śląsk (in Polish).
  19. Kołodziejczyk, P., Musioł, S. & Wesołowski, M. (2007). Ability to forecast mining area uplift as a result of mine flooding. 63(9), 6–11.
  20. Kowalska, I. J. (2014). Risk management in the hard coal mining industry: Social and environmental aspects of collieries’ liquidation. Resources Policy, 41, 124–134. DOI: 10.1016/j.resourpol.2014.05.002
  21. Krzemień, A., Suárez Sánchez, A., Riesgo Fernández, P., Zimmermann, K. & González Coto, F. (2016). Towards sustainability in underground coal mine closure contexts: A methodology proposal for environmental risk management. Journal of Cleaner Production, 139, 1044–1056. DOI: 10.1016/j.jclepro.2016.08.149
  22. Liu, D. (2020). A numerical method for analyzing fault slip tendency under fluid injection with XFEM. Acta Geotechnica, 15(2), 325–345. DOI: 10.1007/s11440-019-00814-w
  23. Management of environmental risks during and after mine closure, Contract No. RFCR-CT-2015-00004. (2020).
  24. Milczarek, W. (2011). Analysis of changes in the rock mass surface after mining in a selected area of the former Wałbrzych Basin.Wroclaw University of Science and Technology. (in Polish).
  25. Mróz, T.M. & Grabowska, W. (2021). The use of geothermal energy in co-generated heat and power production in Poland – a case study. Archives of Environmental Protection, 47(3), 82–91. DOI: 10.24425/aep.2021.138466
  26. Pöttgens, J.J.E. (1985). Bodenhebung durch ansteigendes Grubenwasser. 6. Internationaler Kongress Für Markscheidewesen, 928–938.
  27. Preuβe, A., Kateloe, H.J. & Sroka, A. (2013). Subsidence and uplift prediction in German and Polish hard coal mining.Markscheidewesen, 120, 23–34.
  28. Samsonov, S., D’Oreye, N. & Smets, B. (2013). Ground deformation associated with post-mining activity at the French–German border revealed by novel InSAR time series method. International Journal of Applied Earth Observation and Geoinformation, 23, 142–154. DOI: 10.1016/j.jag.2012.12.008
  29. Sattari, A. & Eaton, D. (2014). Finite element modelling of fault stress triggering due to hydraulic fracturing. GeoConvention 2014: FOCUS Adapt, Refine, Sustain.
  30. Schaefer, W. (2007). Ground movements in the tectonics of the Rhenish lignite mining area, 215–225. (in Polish).
  31. Sroka, A. (2005). Ein Beitrag zur Vorausberechnung der durch den Grubenwasseranstieg bedingten Hebungen. 5. Altbergbau- -Kolloquium, 453–462.
  32. Sroka, A., Preuβe, A., Tajduś, K. & Misa, R. (2016). Gutachterliche Stellungnahme zum Einfluss möglicher Grubenwasserregulierungsmaßnahmen auf die Abwasserinfrastruktur der Emschergenossenschaft Teil 1/1: Markscheiderische Beurteilung.
  33. Sroka, A., Tajduś, K. & Misa, R. (2017). Gutachterliche Stellungnahme zur Auswirkung des Grubenwasseranstiegs im Ostfeld des Bergwerkes Ibbenbüren auf die Tagesoberfläche.
  34. Tajduś, A. & Tokarski, S. (2020). Risks Related to Energy Policy of Poland Until 2040 (EPP 2040). Archives of Mining Sciences, 877–899.
  35. Tajduś, K., Sroka, A., Misa, R. & Dudek, M. (2017). Examples of threats to the ground surface with discontinuous deformations of the surface type appearing over liquidated underground mining excavations, 19(3), 3–10. (in Polish).
  36. Vervoort, A. & Declercq, P.-Y. (2017). Surface movement above old coal longwalls after mine closure. International Journal of Mining Science and Technology, 27(3), 481–490. DOI: 10.1016/j.ijmst.2017.03.007
  37. Vervoort, A. & Declercq, P.-Y. (2018). Upward surface movement above deep coal mines after closure and flooding of underground workings. International Journal of Mining Science and Technology, 28(1), 53–59. https://doi.org/10.1016/j.ijmst.2017.11.008
  38. Wasielewski, R., Wojtaszek, M. & Plis, A. (2020). Investigation of fly ash from co-combustion of alternative fuel (SRF) with hard coal in a stoker boiler. Archives of Environmental Protection, 46 (No 2), 58–67. DOI: 10.24425/aep.2020.133475
  39. Wesołowski, M. (2012). Computer simulation of the impact of flooding mine workings of the former mine "Gliwice" and "Pstrowski" on land surface, 68(5), 54–59. (in Polish).
  40. Wysocka, M., Skubacz, K., Chmielewska, I., Urban, P. & Bonczyk, M. (2019). Radon migration in the area around the coal mine during closing process. International Journal of Coal Geology, 212, 103253. DOI: 10.1016/j.coal.2019.103253
  41. Zwierzchowski, R. & Różycka-Wrońska, E. (2021). Operational determinants of gaseous air pollutants emissions from coal-fired district heating sources. Archives of Environmental Protection, 47(3), 108–119. DOI: 10.24425/aep.2021.1384

Date

07.03.2022

Type

Article

Identifier

DOI: 10.24425/aep.2022.140549

DOI

10.24425/aep.2022.140549

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×