Details
Title
Adsorption of oxytetracycline and ciprofloxacin on carbon-based nanomaterials as affected by pHJournal title
Archives of Environmental ProtectionYearbook
2022Volume
48Issue
2Affiliation
Gamoń, Filip : Silesian University of Technology, Department of Environmental Biotechnology, Gliwice, Poland ; Tomaszewski, Mariusz : Silesian University of Technology, Department of Environmental Biotechnology, Gliwice, Poland ; Cema, Grzegorz : Silesian University of Technology, Department of Environmental Biotechnology, Gliwice, Poland ; Ziembińska-Buczyńska, Aleksandra : Silesian University of Technology, Department of Environmental Biotechnology, Gliwice, PolandAuthors
Keywords
adsorption, ; ciprofloxacin, ; oxytetracycline, ; carbon-nanomaterialsDivisions of PAS
Nauki TechniczneCoverage
34-41Publisher
Polish Academy of SciencesBibliography
- Ahmed, M.J. (2017). Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environ. Toxicol. Pharmacol. 50, 1-10. DOI:10.1016/j.etap.2017.01.004
- Carabineiro, S.A.C., Thavorn-amornsri, T., Pereira, M.F.R., Serp, P. & Figueiredo, J.L. (2012). Comparison between activated carbon, carbon xerogel and carbon nanotubes for the adsorption of the antibiotic ciprofloxacin. Catalysis Today, 186(1), 29–34. DOI:10.1016/j.cattod.2011.08.020
- ECDC, 2018. European Centre for disease prevention and Control. An agency of the Europe-an Union. Country overview of antimicrobial consumption. http://www.ecdc. euro-pa.eu/en/activities/surveillance/esac-net/pages/index.aspx.
- Felis, E., Kalka, J., Sochacki, A., Kowalska, K., Bajkacz, S., Harnisz, M. & Korzeniewska, E. (2019). Antimicrobial pharmaceuticals in the aquatic environment - occurrence and en-vironmental implications. Europ J of Pharm, 172813. DOI:10.1016/j.ejphar.2019.172813
- Figueroa, R.A. & MacKay, A.A., (2005). Sorption of Oxytetracycline to Iron Oxides and Iron Oxide-Rich Soils. Environ. Sci. Technol, 39(17), 6664–6671. DOI:10.1021/es048044l
- Figueroa, R.A., Leonard, A. & MacKay, A.A. (2004). Modeling Tetracycline Antibiotic Sorp-tion to Clays. Environ. Sci. Technol., 38(2), 476–483. DOI:10.1021/es0342087
- Franz, M., Arafat, H.A. & Pinto, N.G. (2000). Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 38 1807–1819. DOI:10.1016/S0008-6223(00)00012-9
- Freundlich, H.M.F. (1906). Over the adsorption in solution. J Phys Chem 57, 385–347
- Gao, Y., Li, Y., Zhang, L., Huang, H., Hu, J., Shah, S.M. & Su, X. (2012). Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J. Coll. Inter. Sci., 368(1), 540–546. DOI:10.1016/j.jcis.2011.11.015
- Genç, N. & Dogan, E.C. (2013). Adsorption kinetics of the antibiotic ciprofloxacin on benton-ite, activated carbon, zeolite, and pumice. Desalin. Water Treat. 53, 785-793. DOI:10.1080/19443994.2013.842504
- Gnihotri, A.S., Rostam-Abadi, M. & Rood, M.J. (2004) Temporal changes in nitrogen adsorp-tion properties of single-walled carbon nanotubes, Carbon, 42, 2699–2710. DOI:10.1016/j.carbon.2004.06.016
- Golet, E.M., Xifra, I., Siegrist, H., Alder, A.C. & Giger, W. (2003). Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environ. Sci. Technol. 37, 3243–3249. DOI:10.1021/es0264448
- Hanna, N., Sun, P., Sun, Q., Li, X., Yang, X., Ji, X., Zoub, H., Ottosond, J., Nilssone, L.E., Berglunde, B., Dyara, O.J., Tamhankar, A.J. & Stålsby Lundborg, C. (2018). Presence of antibiotic residues in various environmental compartments of Shandong province in eastern China: its potential for resistance development and ecological and human risk. Environ. Int. 114, 131–142. DOI:10.1016/j.envint.2018.02.003
- Ji, L.C.W., Duan, L. & Zhu, D.Q. (2009). Mechanisms for strong adsorption of tetracycline to carbon nanotubes: A comparative study using activated carbon and graphite as adsor-bents. Environ. Sci. Technol. 43, 2322–2327. DOI:10.1021/es803268b
- Ji, L., Chen, W., Bi, J., Zheng, S., Xu, Z., Zhu, D. & Alvarez, P.J. (2010). Adsorption of tet-racycline on single-walled and multi-walled carbon nanotubes as affected by aqueous solution chemistry. Environ. Toxicol. Chem. 29, 2713-2719. DOI:10.1002/etc.350
- Kolanowska, A., Wąsik, P., Zięba, W., Terzyk, A.P. & Boncel, S. (2019) Selective carboxyla-tion versus layer-by-layer unsheathing of multi-walled carbon nanotubes: new insights from the reaction with boiling nitrating mixture. RSC Adv., 9, 37608-37613. DOI:10.1039/C9RA08300F
- Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40, 1361–1403. DOI:10.1021/ja02242a004
- Lalwani, G., D’Agati, M., Khan, A.M. & Sitharaman, B. (2016). Toxicology of graphene-based nanomaterials. Adv. Drug Del. Rev., 105, 109–144. DOI:10.1016/j.addr.2016.04.028
- Lemańska, N., Felis, E., Poraj-Kobielska, M., Gajda-Meissner, Z. & Hofrichter, M. (2021). Comparison of sulphonamides decomposition efficiency in ozonation and enzymatic oxidation processes. Arch. Environ. Protect. 47 (1), 10–18. DOI:10.24425/aep.2021.136443
- Li, Y., Du, Q., Liu, T., Peng, X., Wang, J., Sun, J., Wang, Y., Wu, S., Wang, Z., Xia, Y. & Xia, L. (2013). Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chem. Eng. Res. and Des., 91(2), 361–368. DOI:10.1016/j.cherd.2012.07.007
- Li, D., Yang, M., Hu, J., Ren, L., Zhang, Y. & Li, K. (2008). Determination and fate of oxy-tetracycline and related compounds in oxytetracycline production wastewater and the receiving river. Environ. Toxicol. Chem. 27, 80-86. DOI:10.1897/07-080.1
- Liu, F.F., Zhao, J., Wang, S. & Xing, B. (2016). Adsorption of sulfonamides on reduced gra-phene oxides as affected by pH and dissolved organic matter. Environ. Pollut, 210, 85–93. DOI:10.1016/j.envpol.2015.11.053
- Liu, F.F., Zhao, J., Wang, S., Du, P. & Xing, B. (2014). Effects of solution chemistry on ad-sorption of selected pharmaceuticals and personal care products (PPCPs) by graphenes and carbon nanotubes. Environ. Sci. Technol. 48, 13197-13206. DOI:10.1021/es5034684
- Loos, R., Carvalho, R., António, D.C., Comero, S., Locoro, G., Tavazzi, S., Paracchini, B., Ghiani, M., Lettieri, T., Blaha, L., Jarosova, B., Voorspoels, S., Servaes, K., Haglund, P., Fickd, J., Lindberg, R.H., Schwesig, D. & Gawlik, B.M. (2013). EU-wide monitor-ing survey on emerging polar organic contaminants in wastewater treatment plant ef-fluents. Water Res. 47, 6475–6487. DOI:10.1016/j.watres.2013.08.024
- Ma, J., Yang, M., Yu, F. & Zheng, J. (2015). Water-enhanced Removal of Ciprofloxacin from Water by Porous Graphene Hydrogel. Sci Rep 5, 13578. DOI:10.1038/srep13578
- Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C. & Fatta-Kassinos, D. (2013). Urban wastewater treatment plants as hotspots for the re-lease of antibiotics in the environment: a review. Water Res. 47, 957–995. DOI:10.1016/j.watres.2012.11.027
- Pan, B. & Xing, B. (2008). Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ. Sci. Technol. 42, 9005–9013. DOI:10.1021/es801777n
- Papageorgiou, D.G., Kinloch, I.A. & Young, R.J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Prog. in Mat. Sci., 90, 75–127. DOI:10.1016/j.pmatsci.2017.07.004
- Reis, E.O., Foureaux, A.F.S., Rodrigues, J.S., Moreira, V.R., Lebron, Y.A.R., Santos, L.V.S., Amaral, M.C.S. & Lange, L.C. (2019). Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environ. Pollut. 250, 773–781. DOI:10.1016/j.envpol.2019.04.102
- Rostamian, R. & Behnejad, H. (2018). A comprehensive adsorption study and modeling of antibiotics as a pharmaceutical waste by graphene oxide nanosheets. Eco. and Enviro. Saf., 147, 117–123. DOI:10.1016/j.ecoenv.2017.08.019
- Sheng, G.D., Shao, D.D., Ren, X.M., Wang, X.Q., Li, J.X., Chen, Y.X. & Wang, X.K. (2010). Kinetics and thermodynamics of adsorption of ionizable aromatic compounds from aqueous solutions by as-prepared and oxidized multiwalled carbon nanotubes. J. Hazar. Mat., 178(1-3), 505–516. DOI:10.1016/j.jhazmat.2010.01.110
- Smajic, J., Alazmi, A., Batra, N., Palanisamy, T., Anjum, D.H. & Cost, P.M.F.J. (2018). Mes-oporous Reduced Graphene Oxide as a High Capacity Cathode for Aluminum Batter-ies. Small, 14(51), 1803584. DOI:10.1002/smll.201803584
- Szymańska, U., Wiergowski, M., Sołtyszewski, I., Kuzemko, J., Wiergowska, G. & Woźniak, M.K. (2019). Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: recent trends and perspectives. Microchem. J. 147, 729–740. DOI:10.1016/j.microc.2019.04.003
- Verlicchi, P., Al Aukidy, M., Galletti, A., Petrovic, M. & Barceló, D. (2012). Hospital efflu-ent: investigation of the concentrations and distribution of pharmaceuticals and envi-ronmental risk assessment. Sci. Total Environ. 430, 109–118. DOI:10.1016/j.scitotenv.2012.04.055
- Wang, X., Yin, R., Zeng, L. & Zhu, M. (2019) A review of graphene-based nanomaterials for removal of antibiotics from aqueous environments. Environ. Pollut 253, 100-110. DOI:10.1016/j.envpol.2019.06.067
- Wang, C.J., Li, Z. & Jiang, W.T. (2011). Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals. Apply. Clay Sci., 53(4), 723–728. DOI:10.1016/j.clay.2011.06.014
- Wang, Z., Yu, X., Pan, B. & Xing, B. (2010). Norfloxacin Sorption and Its Thermodynamics on Surface-Modified Carbon Nanotubes. Environ. Sci. Technol, 44(3), 978–984. DOI:10.1021/es902775u
- Watkinson, A.J., Murby, E.J., Kolpin, D.W. & Costanzo, S.D. (2009). The occurrence of anti-biotics in an urban watershed: from wastewater to drinking water. Sci. Total Environ. 407, 2711–2723. DOI:10.1016/j.scitotenv.2008.11.059
- Xu, B., Yue, S., Sui, Z., Zhang, X., Hou, S., Cao, G. & Yang, Y. (2011). What is the choice for supercapacitors: graphene or graphene oxide? Energy Environ. Sci., 4(8), 2826-2830. DOI:10.1039/c1ee01198g
- Yadav, S., Goel, N. & Kumar, V. (2018). Removal of fluoroquinolone from aqueous solution using graphene oxide: experimental and computational elucidation. Environ Sci Pollut Res 25, 2942–2957. DOI:10.1007/s11356-017-0596-8
- Zhang, G.F., Liu, X., Zhang, S., Pan, B. & Liu, M.L. (2018). Ciprofloxacin derivatives and their antibacterial activities. Eu. J. Med. Chem. 146, 599-612. DOI:10.1016/j.ejmech.2018.01.078
- Zhang, D., Pan, B., Zhang, H., Ning, P. & Xing, B. (2010). Contribution of Different Sulfa-methoxazole Species to Their Overall Adsorption on Functionalized Carbon Nano-tubes. Environ. Sci. Technol, 44(10), 3806–3811. DOI:10.1021/es903851q
- Zhao, J., Wang, Z., Ghosh, S. & Xing, B. (2014). Phenanthrene binding by humic acideprotein complexes as studied by passive dosing technique. Environ. Pollut. 184, 145-153. DOI:10.1016/j.envpol.2013.08.028
- Zheng, H., Wang, Z., Zhao, J., Herbert, S. & Xing, B. (2013). Sorption of antibiotic sulfa-methoxazole varies with biochars produced at different temperatures. Environ. Pollut, 181, 60–67. DOI:10.1016/j.envpol.2013.05.056
- Zhu, D.Q. & Pignatello, J.J. (2005). Characterization of aromatic compound sorptive interac-tions with black carbon (charcoal) assisted by graphite as a model, Environ. Sci. Tech-nol. 39, 2033–2041. DOI:10.1021/es0491376
Date
29.06.2022Type
ArticleIdentifier
DOI: 10.24425/aep.2022.140764DOI
10.24425/aep.2022.140764Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science