Details

Title

Numerical investigation of vortex wake patterns of laminar flow around two side-by-side cylinders

Journal title

Archive of Mechanical Engineering

Yearbook

2022

Volume

vol. 69

Issue

No 3

Affiliation

Nguyen, Van Luc : Institute of Engineering and Technology, Thu Dau Mot University, Binh Duong Province, Vietnam ; Ho, Duy Knanh : Institute of Engineering and Technology, Thu Dau Mot University, Binh Duong Province, Vietnam

Authors

Keywords

viscous fluid ; vortex shedding ; vortex wake pattern ; vortex-in-cell method ; two side-by-side cylinders

Divisions of PAS

Nauki Techniczne

Coverage

541-565

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] S. Ishigai, E. Nishikawa, K. Nishimura, and K. Cho. Experimental study on structure of gas flow in tube banks with tube axes normal to flow: Part 1, Karman vortex flow from two tubes at various spacings. Bulletin of JSME, 15(86):949–956, 1972. doi: 10.1299/jsme1958.15.949.
[2] P.W. Bearman and A.J.Wadcock. The interaction between a pair of circular cylinders normal to a stream. Journal of Fluid Mechanics, 61(3):499–511, 1973. doi: 10.1017/S0022112073000832.
[3] M.M. Zdravkovich. The effects of interference between circular cylinders in cross flow. Journal of Fluids and Structures, 1(2):239–261, 1987. doi: 10.1016/S0889-9746(87)90355-0.
[4] C.H.K. Williamson. Evolution of a single wake behind a pair of bluff bodies. Journal of Fluid Mechanics, 159:1–18, 1985. doi: 10.1017/S002211208500307X.
[5] H.J. Kim and P.A. Durbin. Investigation of the flow between a pair of circular cylinders in the flopping regime. Journal of Fluid Mechanics, 196:431–448, 1988. doi: 10.1017/S0022112088002769.
[6] K.-S. Chang and C.-J.. Song. Interactive vortex shedding from a pair of circular cylinders in a transverse arrangement. International Journal for Numerical Methods in Fluids, 11(3):317–329, 1990. doi: 10.1002/fld.1650110305.
[7] S. Kang. Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers. Physics of Fluids, 15(9):2486, 2003. doi: 10.1063/1.1596412.
[8] A. Slaouti and P.K. Stansby. Flow around two circular cylinders by the random-vortex method. Journal of Fluids and Structures, 6(6):641–670, 1992. doi: 10.1016/0889-9746(92)90001-J.
[9] J.R. Meneghini, F. Saltara, C.L.R. Siqueira, and J.A. Ferrari Jr. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of Fluids and Structures, 15(2):327–350, 2001. doi: 10.1006/jfls.2000.0343.
[10] W. Jester and Y. Kallinderis. Numerical study of incompressible flow about fixed cylinder pairs. Journal of Fluids and Structures, 17(4):561–577, 2003. doi: 10.1016/S0889-9746(02)00149-4.
[11] C.K. Birdsall and D. Fuss. Clouds-in-clouds, clouds-in-cells physics for many-body plasma simulation. Journal of Computational Physics, 3(4):494–511, 1969. doi: 10.1016/0021-9991(69)90058-8.
[12] I.P. Christiansen. Numerical simulation of hydrodynamics by the method of point vortices. Journal of Computational Physics,13(3):363–379,1973. doi: 10.1016/0021-9991(73)90042-9.
[13] G.-H. Cottet and P.D. Koumoutsakos. Vortex Methods: Theory and Practice. Cambridge University Press, 2000.
[14] V.L. Nguyen, R.Z. Lavi, and T. Uchiyama. Numerical simulation of flow around two tandem cylinders by vortex in cell method combined with immersed boundary method. Advances and Applications in Fluid Mechanics, 19(4):781–804, 2016. doi: 10.17654/FM019040787.
[15] V.L. Nguyen, T. Takamure, and T. Uchiyama. Deformation of a vortex ring caused by its impingement on a sphere. Physics of Fluids, 31(10):107108, 2019. doi: 10.1063/1.5122260.
[16] V. L. Nguyen, T. Nguyen-Thoi, and V. D. Duong. Characteristics of the flow around four cylinders of various shapes. Ocean Engineering, 238:109690, 2021.
[17] J.J. Monaghan. Extrapolating B splines for interpolation. Journal of Computational Physics, 60(2):253–262, 1985. doi: 10.1016/0021-9991(85)90006-3.
[18] J.H. Walther and P. Koumoutsakos. Three-dimensional vortex methods for particle-laden flows with two-way coupling. Journal of Computational Physics, 167(1):39–71, 2001. doi: 10.1006/jcph.2000.6656.
[19] C.S. Peskin. Flow patterns around heart valves: a numerical method. Journal of Computational Physics, 10(2):252–271, 1972. doi: 10.1016/0021-9991(72)90065-4.
[20] P. Angot, C.-H. Bruneau, and P. Fabrie. A penalization method to take into account obstacles in incompressible viscous flows. Numerische Mathematik, 81:497–520, 1999. doi: 10.1007/s002110050401.
[21] E.A. Fadlun, R. Verzicco, P. Orlandi, and J. Mohd-Yusof. Combined immersed-boundary finitedifference methods for three-dimensional complex flow simulations. Journal of Computational Physics, 191(1):35–60, 2000. doi: 10.1006/jcph.2000.6484.
[22] N.K.-R. Kevlahan and J.-M. Ghidaglia. Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization. European Journal of Mechanics - B/Fluids, 20(3):333–350, 2001. doi: 10.1016/S0997-7546(00)01121-3.
[23] M. Coquerelle and G.-H.Cottet. Avortex level set method for the two-way coupling of an incompressible fluid with colliding rigid bodies. Journal of Computational Physics, 227(21):9121– 9137, 2008. doi: 10.1016/j.jcp.2008.03.041.
[24] F. Noca, D. Shiels, and D. Jeon. A comparison of methods for evaluating time-dependent fluid dynamic forces on bodies, using only velocity fields and their derivatives. Journal of Fluids and Structures, 13(5):551–578, 1999. doi: 10.1006/jfls.1999.0219.
[25] C. Mimeau, F. Gallizio, G.-H. Cottet, and I. Mortazavi. Vortex penalization method for bluff body flows. International Journal for Numerical Methods in Fluids, 79(2):55–83, 2015. doi: 10.1002/fld.4038.
[26] J.-I. Choi, R.C. Oberoi, J.R. Edwards, and J.A. Rosati. An immersed boundary method for complex incompressible flows. Journal of Computational Physics, 224(2):757–784, 2007. doi: 10.1016/j.jcp.2006.10.032.
[27] AB. Harichandan and A. Roy. Numerical investigation of low Reynolds number flow past two and three circular cylinders using unstructured grid CFR scheme. International Journal of Heat and Fluid Flow, 31(2):154–171, 2010. doi: 10.1016/j.ijheatfluidflow.2010.01.007.
[28] M. Braza, P. Chassaing, and H. Ha Minh. Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of Fluid Mechanics, 165:79– 130, 1986. doi: 10.1017/S0022112086003014.
[29] K. Supradeepan and A. Roy. Characterisation and analysis of flow over two side by side cylinders for different gaps at low Reynolds number: A numerical approach. Physics of Fluids, 26(6):063602, 2014. doi: 10.1063/1.4883484.
[30] V.L. Nguyen, T. Degawa, and T. Uchiyama. Numerical simulation of annular bubble plume by vortex in cell method. International Journal of Numerical Methods for Heat and Fluid Flow, 29(3):1103–1131, 2019. doi: 10.1108/HFF-03-2018-0094.

Date

10.09.2022

Type

Article

Identifier

DOI: 10.24425/ame.2022.141517 ; ISSN 0004-0738, e-ISSN 2300-1895
×