Details

Title

A comparative study for double pass solar air collector utilizing medial glass panel

Journal title

Archive of Mechanical Engineering

Yearbook

2022

Volume

vol. 69

Issue

No 4

Affiliation

Salih, Hussein Majeed : Electromechanical Engineering Department, University of Technology, Iraq

Authors

Keywords

solar air collector ; double-pass ; CFD ; finite volume ; thermal performance

Divisions of PAS

Nauki Techniczne

Coverage

729-747

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography


[1] J.M. Jalil, A.H. Ayaal, and A.A. Hardan. Numerical investigation of thermal performance for air solar collector with multi inlets. IOP Conference Series: Materials Science and Engineering, 765:012036, 2020. doi: 10.1088/1757-899X/765/1/012036.
[2] A. Abene, V. Dubois, M. Le Ray, and A. Ouagued. Study of a solar air flat plate collector: use of obstacles and application for the drying of grape. Journal of Food Engineering, 65(1):15–22, 2004. doi: 10.1016/j.jfoodeng.2003.11.002.
[3] R.S. Gill, S. Singh, and P.P. Singh. Low cost solar air heater. Energy Conversion and Management, 57:131–142, 2012. doi: 10.1016/j.enconman.2011.12.019.
[4] A.E. Kabeel, A. Khalil, S.M. Shalaby, and M.E. Zayed. Experimental investigation of thermal performance of flat and v-corrugated plate solar air heaters with and without PCM as thermal energy storage. Energy Conversion and Management, 113:264–772, 2016. doi: 10.1016/j.enconman.2016.01.068.
[5] A. Sakhrieh and A. Al-Ghandoor. Experimental investigation of the performance of five types of solar collectors. Energy Conversion and Management, 65:715–720, 2013. doi: 10.1016/j.enconman.2011.12.038.
[6] J.M. Jalil, K.F. Sultan, and L.A. Rasheed. Numerical and experimental investigation of solar air collectors performance connected in series. Engineering and Technology Journal, 35(3):190–196, 2017.
[7] J. Assadeg J, A.H.A. Al-Waeli, A. Fudholi, and K. Sopian. Energetic and exergetic analysis of a new double pass solar air collector with fins and phase change material. Solar Energy, 226:260–271, 2021. doi: 10.1016/j.solener.2021.08.056.
[8] J.M. Jalil and S.J. Ali. Thermal investigations of double pass solar air heater with two types of porous media of different thermal conductivity. Engineering and Technology Journal, 39(1):79–88, 2021. doi: 10.30684/etj.v39i1A.1704.
[9] S. Bassem, J.M. Jalil, and S.J. Ismael. Experimental study of double pass water passage in evacuated tube with parabolic trough collector. Journal of Physics: Conference Series, 1973:012058, 2021. doi: 10.1088/1742-6596/1973/1/012058.
[10] J.M. Jalil, R.F. Nothim, and M.M. Hameed. Effect of wavy fins on thermal performance of double pass solar air heater. Engineering and Technology Journal, 39(9):1362–1368, 2021. doi: 10.30684/etj.v39i9.1775.
[11] W. Siddique, A. Raheem, M. Aqeel, S. Qayyum, T, Salamen, K. Waheed, and K. Qureshi. Evaluation of thermal performance factor for solar air heaters with artificially roughened channels. Archive of Mechanical Engineering, 68(2):195–225, 2021. doi: 10.24425/ame.2021.137048.
[12] H.K. Ghritlahre. An experimental study of solar air heater using arc shaped wire rib roughness based on energy and exergy analysis. Archives of Thermodynamics, 42(3):115–139, 2021. doi: 10.24425/ather.2021.138112.
[13] A. Kumar, Akshayveer, A.P. Singh, and O.P. Singh. Efficient designs of double-pass curved solar air heaters. Renewable Energy, 160:1105–1118, 2020. doi: 10.1016/j.renene.2020.06.115.
[14] S. Abo-Elfadl, H. Hassan, and M.F. El-Dosoky. Study of the performance of double pass solar air heater of a new designed absorber: An experimental work. Solar Energy, 198:479–489, 2020. doi: 10.1016/j.solener.2020.01.091.
[15] S. Singh. Experimental and numerical investigations of a single and double pass porous serpentine wavy wiremesh packed bed solar air heater. Renewable Energy, 145:1361–1387, 2020. doi: 10.1016/j.renene.2019.06.137.
[16] H.K. Ghritlahre and P.K. Sahu. A comprehensive review on energy and exergy analysis of solar air heaters. Archives of Thermodynamics, 41(3):183–222, 2020. doi: 10.24425/ather.2020.134577.
[17] S. Dogra, R.D. Jilte, and A. Sharma. Study of performance enhancement of single and double pass solar air heater with change in surface roughness. Journal of Physics: Conference Series, 1531:012091, 2020. doi: 10.1088/1742-6596/1531/1/012091.
[18] S. Sivakumar, K. Siva, and M. Mohanraj. Experimental thermodynamic analysis of a forced convection solar air heater using absorber plate with pin-fins. Journal of Thermal Analysis and Calorimetry, 136(1):39–47, 2019. doi: 10.1007/s10973-018-07998-5.
[19] S.M. Salih J.M. Jalil, and S.E. Najim. Experimental and numerical analysis of double-pass solar air heater utilizing multiple capsules PCM. Renewable Energy, 143:1053–1066, 2019. doi: 10.1016/j.renene.2019.05.050.
[20] S. Singh, L. Dhruw, and S. Chander. Experimental investigation of a double pass converging finned wire mesh packed bed solar air heater. Journal of Energy Storage, 21:713–723, 2019. doi: 10.1016/j.est.2019.01.003.
[21] P.T. Saravanakumar, D. Somasundaram, and M.M. Matheswaran. Thermal and thermo-hydraulic analysis of arc shaped rib roughened solar air heater integrated with fins and baffles. Solar Energy, 180:360–371, 2019. doi: 10.1016/j.solener.2019.01.036.
[22] C.A. Komolafe, I.O. Oluwaleye, O. Awogbemi, and C.O. Osueke. Experimental investigation and thermal analysis of solar air heater having rectangular rib roughness on the absorber plate. Case Studies in Thermal Engineering, 14:100442, 2019. doi: 10.1016/j.csite.2019.100442.
[23] H. Mzad, K. Bey, and R. Khelif. Investigative study of the thermal performance of a trial solar air heater. Case Studies in Thermal Engineering, 13:100373, 2019. doi: 10.1016/j.csite.2018.100373.
[24] S.S. Patel and A. Lanjewar. Exergy based analysis of solar air heater duct with W-shaped rib roughness on the absorber plate. Archives of Thermodynamics, 40(4):21–48, 2019. doi: 10.24425/ather.2019.130006.
[25] A.S. Mahmood. Experimental study on double-pass solar air heater with and without using phase change material. Journal of Engineering. 25(2):1-17. doi: 10.31026/j.eng.2019.02.01.
[26] R.K. Ravi and R.P. Saini. Effect of roughness elements on thermal and thermohydraulic performance of double pass solar air heater duct having discrete multi V-shaped and staggered rib roughness on both sides of the absorber plate. Experimental Heat Transfer, 31(1):47–67, 2018. doi: 10.1080/08916152.2017.1350217.
[27] H. Hassan and S. Abo-Elfadl. Experimental study on the performance of double pass and two inlet ports solar air heater (SAH) at different configurations of the absorber plate. Renewable Energy, 116:728–740, 2018. doi: 10.1016/j.renene.2017.09.047.
[28] S.S. Hosseini, A. Ramiar, and A.A. Ranjbar. Numerical investigation of natural convection solar air heater with different fins shape. Renewable Energy, 117:488–500, 2018. doi: 10.1016/j.renene.2017.10.052.
[29] A.P. Singh and O.P. Singh. Performance enhancement of a curved solar air heater using CFD. Solar Energy, 174:556–569, 2018. doi: 10.1016/j.solener.2018.09.053.
[30] A.M. Rasham and M.M.M. Alaskari. Thermal analysis of double-pass solar air collector with different materials of absorber plate and different dimensions of air channels. International Journal of Science and Research (IJSR), 6(8):901–908, 2017.
[31] R. Kumar and P. Chand. Performance enhancement of solar air heater using herringbone corrugated fins. Energy, 127:271–279, 2017. doi: 10.1016/j.energy.2017.03.128.
[32] M.W. Kareem, K. Habib, and S.A. Sulaiman. Comparative study of single pass collector and double pass solar collector filled with porous media. Asian Journal of Scientific Research, 6(3):445–455, 2013. doi: 10.3923/ajsr.2013.445.455.
[33] A. Fudholi, M.H. Ruslan, M.Y. Othman, M. Yahya, S. Supranto, A. Zaharim, and K. Sopian. Collector efficiency of the double-pass solar air collectors with fins. In Proceedings of the 9th WSEAS International Conference on System Science and Simulation in Engineering, pages 428–434, Japan, 2010.
[34] B.M. Ramani, A. Gupta, and R. Kumar. Performance of a double pass solar air collector. Solar Energy, 84(11):1929–1937, 2010. doi: 10.1016/j.solener.2010.07.007.
[35] H.K. Versteeg and W. Malalsekera. An Introduction to Computational Fluid Dynamics. The Finite Volume Method. Pearson Education Ltd. 1995.
[36] B.E. Launder and D.B. Spalding. The numerical computation of turbulent flows. In S.V. Patankar, A. Pollard, A.K. Singhal, and S.P. Vanka, editors: Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, pages 96–116. Pergamon, 1983. doi: 10.1016/B978-0-08-030937-8.50016-7.
[37] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. CRC Press, 2018. doi: 10.1201/9781 482234213.
[38] N.I. Dawood, J.M. Jalil, and M.K. Ahmed. Experimental investigation of a window solar air collector with circular-perforated moveable absorber plates. Journal of Physics: Conference Series, 1973:012057, 2021. doi: 10.1088/1742-6596/1973/1/012057.
[39] F. Haghighat, Z. Jiang, J.C.Y. Wang, and F. Allard. Air movement in buildings using computational fluid dynamics. Journal of Solar Energy Engineering, 114(2):84–92, 1992. doi: 10.1115/ 1.2929994.

Date

4.11.2022

Type

Article

Identifier

DOI: 10.24425/ame.2022.141524
×