Details

Title

Simultaneous removal of phenol and Cu(II) from wastewater by tallow dihydroxyethyl betaine modified bentonite

Journal title

Archives of Environmental Protection

Yearbook

2022

Volume

48

Issue

3

Affiliation

Hu, Xiangyang : PowerChina Northwest Engineering Corporation Limited, China ; Wang, Bao : Xi’an University of Architecture and Technology, China ; Yan, Gengsheng : PowerChina Northwest Engineering Corporation Limited, China ; Ge, Bizhou : Xi’an University of Architecture and Technology, China

Authors

Keywords

simultaneous adsorption; ; bentonite; ; tallow dihydroxyethyl betaine; ; Cu(II); ; phenol;

Divisions of PAS

Nauki Techniczne

Coverage

37-47

Publisher

Polish Academy of Sciences

Bibliography

  1. Andronico, M. & Bajda, T. (2019). Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features. Materials, 12(22), 3772. DOI:10.3390/ma12223772
  2. Banat, F. A., Al-Bashir, B., Al-Asheh, S. & Hayajneh, O. (2000). Adsorption of phenol by bentonite. Environmental Pollution, 107(3), pp. 391-398. DOI:10.1016/S0269-7491(99)00173-6
  3. Bhattacharyya, K. G. & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140(2), pp. 114-131. DOI:10.1016/j.cis.2007.12.008
  4. Cao, L., Li, Z., Xiang, S., Huang, Z., Ruan, R. & Liu, Y. (2019). Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater. Bioresource Technology, 284, pp. 448-455. DOI:10.1016/j.biortech.2019.03.043
  5. Chen, H., Zhou, W., Zhu, K., Zhan, H. & Jiang, M. (2004). Sorption of ionizable organic compounds on HDTMA-modified loess soil. Science of The Total Environment, 326(1), pp. 217-223. DOI:10.1016/j.scitotenv.2003.12.011
  6. Chen, Y., Zhang, X., Wang, L., Cheng, X. & Shang, Q. (2020). Rapid removal of phenol/antibiotics in water by Fe-(8-hydroxyquinoline-7-carboxylic)/TiO2 flower composite: Adsorption combined with photocatalysis. Chemical Engineering Journal, 402, 126260. DOI:10.1016/j.cej.2020.126260
  7. Chu, Y., Khan, M. A., Xia, M., Lei, W., Wang, F., Zhu, S. & Yan, X. (2020). Synthesis and micro-mechanistic studies of histidine modified montmorillonite for lead(II) and copper(II) adsorption from wastewater. Chemical Engineering Research and Design, 157, pp. 142-152. DOI:10.1016/j.cherd.2020.02.020
  8. Díaz-Nava, M. C., Olguín, M. T. & Solache-Ríos, M. (2012). Adsorption of phenol onto surfactants modified bentonite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74(1), 67-75. DOI:10.1007/s10847-011-0084-6
  9. Fan, H., Zhou, L., Jiang, X., Huang, Q. & Lang, W. (2014). Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Applied Clay Science, 95, pp. 150-158. DOI:10.1016/j.clay.2014.04.001
  10. Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry A, 57(385471), pp. 1100-1107. DOI:10.1515/zpch-1907-5723
  11. Griffin, R. A. & Shimp, N. F. (1976). Effect of pH on exchange-adsorption or precipitation of lead from landfill leachates by clay minerals. Environmental science & technology, 10(13), pp. 1256-1261. DOI:10.1021/es60123a003
  12. He, Y., Chen, Y., Zhang, K., Ye, W. & Wu, D. (2019). Removal of chromium and strontium from aqueous solutions by adsorption on laterite. Archives of Environmental Protection, 45(3), pp. 11-20. DOI:10.24425/aep.2019.128636
  13. Kong, Y., Wang, L., Ge, Y., Su, H. & Li, Z. (2019). Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. Journal of Hazardous Materials, 368, pp. 33-41. DOI:10.1016/j.jhazmat.2019.01.026
  14. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), pp. 1361-1403. DOI:10.1021/ja02242a004
  15. Lee, C., Lee, S., Park, J., Park, C., Lee, S. J., Kim, S., An, B., Yun, S., Lee, S. & Choi, J. (2017). Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, 166, pp. 203-211. DOI:10.1016/j.chemosphere.2016.09.093
  16. Lin, S. & Juang, R. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92(3), pp. 315-326. DOI:10.1016/S0304-3894(02)00026-2
  17. Liu, C., Wu, P., Zhu, Y. & Tran, L. (2016). Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere, 144, pp. 1026-1032. DOI:10.1016/j.chemosphere.2015.09.063
  18. Long, H., Wu, P. & Zhu, N. (2013). Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chemical Engineering Journal, 225, pp. 237-244. DOI:10.1016/j.cej.2013.03.088
  19. Ma, J. & Zhu, L. (2006). Simultaneous sorption of phosphate and phenanthrene to inorgano–organo-bentonite from water. Journal of Hazardous Materials, 136(3), pp. 982-988. DOI:10.1016/j.jhazmat.2006.01.046
  20. Ma, J. & Zhu, L. (2007). Removal of phenols from water accompanied with synthesis of organobentonite in one-step process. Chemosphere, 68(10), pp. 1883-1888. DOI:10.1016/j.chemosphere.2007.03.002
  21. Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q. & Ayoko, G. A. (2016). Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, pp. 880-888. DOI:10.1016/j.cej.2015.08.009
  22. Matthes, W., Madsen, F. T. & Kahr, G. (1999). Sorption of heavy-metal cations by Al and Zr-hydroxy-intercalated and pillared bentonite. Clays and Clay Minerals, 47(5), pp. 617-629. DOI:10.1346/CCMN.1999.0470508
  23. Meng, Z., Zhang, Y. & Zhang, Z. (2008). Simultaneous adsorption of phenol and cadmium on amphoteric modified soil. Journal of Hazardous Materials, 159(2), pp. 492-498. DOI:10.1016/j.jhazmat.2008.02.045
  24. Nourmoradi, H., Nikaeen, M. & Khiadani Hajian, M. (2012). Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chemical Engineering Journal, 191, pp. 341-348. DOI:10.1016/j.cej.2012.03.029
  25. Pal, A., Jayamani, J. & Prasad, R. (2014). An urgent need to reassess the safe levels of copper in the drinking water: Lessons from studies on healthy animals harboring no genetic deficits. NeuroToxicology, 44, pp. 58-60. DOI:10.1016/j.neuro.2014.05.005
  26. Park, Y., Ayoko, G. A., Horváth, E., Kurdi, R., Kristof, J. & Frost, R. L. (2013). Structural characterisation and environmental application of organoclays for the removal of phenolic compounds. Journal of Colloid and Interface Science, 393, pp. 319-334. DOI:10.1016/j.jcis.2012.10.067
  27. Qu, Y., Qin, L., Liu, X. & Yang, Y. (2020). Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere, 251, 126376. DOI:10.1016/j.chemosphere.2020.126376
  28. Redlich, O. & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of physical chemistry, 63(6), 1024. DOI:10.1021/j150576a611
  29. Ren, S., Meng, Z., Sun, X., Lu, H., Zhang, M., Lahori, A. H. & Bu, S. (2020). Comparison of Cd2+ adsorption onto amphoteric, amphoteric-cationic and amphoteric-anionic modified magnetic bentonites. Chemosphere, 239, 124840. DOI:10.1016/j.chemosphere.2019.124840
  30. Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C. & Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 172(1), pp. 353-362. DOI:10.1016/j.jhazmat.2009.07.019
  31. Taffarel, S. R. & Rubio, J. (2010). Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Minerals Engineering, 23(10), pp. 771-779. DOI:10.1016/j.mineng.2010.05.018
  32. Tri, N. L. M., Thang, P. Q., Van Tan, L., Huong, P. T., Kim, J., Viet, N. M., Phuong, N. M. & Al Tahtamouni, T. M. (2020). Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite. Journal of Water Process Engineering, 33, 101070. DOI:10.1016/j.jwpe.2019.101070
  33. Veli, S. & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149(1), pp. 226-233. DOI:10.1016/j.jhazmat.2007.04.109
  34. Wang, G., Wang, X., Zhang, S., Ma, S., Wang, Y. & Qiu, J. (2020). Adsorption of heavy metal and organic pollutant by organo-montmorillonites in binary-component system. Journal of Porous Materials, 27(5), pp. 1515-1522. DOI:10.1007/s10934-020-00927-8
  35. Wang, G., Zhang, S., Hua, Y., Su, X., Ma, S., Wang, J., Tao, Q., Wang, Y. & Komarneni, S. (2017). Phenol and/or Zn2+ adsorption by single- or dual-cation organomontmorillonites. Applied Clay Science, 140, pp. 1-9. DOI:10.1016/j.clay.2017.01.023
  36. Yan, L., Shan, X., Wen, B. & Zhang, S. (2007). Effect of lead on the sorption of phenol onto montmorillonites and organo-montmorillonites. Journal of Colloid and Interface Science, 308(1), pp. 11-19. DOI:10.1016/j.jcis.2006.12.027
  37. Yang, G., Tang, L., Zeng, G., Cai, Y., Tang, J., Pang, Y., Zhou, Y., Liu, Y., Wang, J., Zhang, S. & Xiong, W. (2015). Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chemical Engineering Journal, 259, pp. 854-864. DOI:10.1016/j.cej.2014.08.081
  38. Yoo, J., Choi, J., Lee, T. & Park, J. (2004). Organobentonite for sorption and degradation of phenol in the presence of heavy metals. Water, Air, and Soil Pollution, 154(1), pp. 225-237. DOI:10.1023/B:WATE.0000022970.21712.64
  39. Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W. & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, pp.884-891. DOI:10.1016/j.chemosphere.2017.06.040
  40. Zendelska, A., Golomeova, M., Golomeov, B. & Krstev, B. (2018). Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff. Archives of Environmental Protection, 44(1), pp. 87-96. DOI:10.24425/118185
  41. Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J. & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, pp. 239-258. DOI:10.1016/j.clay.2015.12.024
  42. Andronico, M. & Bajda, T. (2019). Modification of Bentonite with Cationic and Nonionic Surfactants: Structural and Textural Features. Materials, 12(22), 3772. DOI:10.3390/ma12223772
  43. Banat, F. A., Al-Bashir, B., Al-Asheh, S. & Hayajneh, O. (2000). Adsorption of phenol by bentonite. Environmental Pollution, 107(3), pp. 391-398. DOI:10.1016/S0269-7491(99)00173-6
  44. Bhattacharyya, K. G. & Gupta, S. S. (2008). Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review. Advances in Colloid and Interface Science, 140(2), pp. 114-131. DOI:10.1016/j.cis.2007.12.008
  45. Cao, L., Li, Z., Xiang, S., Huang, Z., Ruan, R. & Liu, Y. (2019). Preparation and characteristics of bentonite–zeolite adsorbent and its application in swine wastewater. Bioresource Technology, 284, pp. 448-455. DOI:10.1016/j.biortech.2019.03.043
  46. Chen, H., Zhou, W., Zhu, K., Zhan, H. & Jiang, M. (2004). Sorption of ionizable organic compounds on HDTMA-modified loess soil. Science of The Total Environment, 326(1), pp. 217-223. DOI:10.1016/j.scitotenv.2003.12.011
  47. Chen, Y., Zhang, X., Wang, L., Cheng, X. & Shang, Q. (2020). Rapid removal of phenol/antibiotics in water by Fe-(8-hydroxyquinoline-7-carboxylic)/TiO2 flower composite: Adsorption combined with photocatalysis. Chemical Engineering Journal, 402, 126260. DOI:10.1016/j.cej.2020.126260
  48. Chu, Y., Khan, M. A., Xia, M., Lei, W., Wang, F., Zhu, S. & Yan, X. (2020). Synthesis and micro-mechanistic studies of histidine modified montmorillonite for lead(II) and copper(II) adsorption from wastewater. Chemical Engineering Research and Design, 157, pp. 142-152. DOI:10.1016/j.cherd.2020.02.020
  49. Díaz-Nava, M. C., Olguín, M. T. & Solache-Ríos, M. (2012). Adsorption of phenol onto surfactants modified bentonite. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 74(1), 67-75. DOI:10.1007/s10847-011-0084-6
  50. Fan, H., Zhou, L., Jiang, X., Huang, Q. & Lang, W. (2014). Adsorption of Cu2+ and methylene blue on dodecyl sulfobetaine surfactant-modified montmorillonite. Applied Clay Science, 95, pp. 150-158. DOI:10.1016/j.clay.2014.04.001
  51. Freundlich, H. (1906). Over the adsorption in solution. The Journal of Physical Chemistry A, 57(385471), pp. 1100-1107. DOI:10.1515/zpch-1907-5723
  52. Griffin, R. A. & Shimp, N. F. (1976). Effect of pH on exchange-adsorption or precipitation of lead from landfill leachates by clay minerals. Environmental science & technology, 10(13), pp. 1256-1261. DOI:10.1021/es60123a003
  53. He, Y., Chen, Y., Zhang, K., Ye, W. & Wu, D. (2019). Removal of chromium and strontium from aqueous solutions by adsorption on laterite. Archives of Environmental Protection, 45(3), pp. 11-20. DOI:10.24425/aep.2019.128636
  54. Kong, Y., Wang, L., Ge, Y., Su, H. & Li, Z. (2019). Lignin xanthate resin–bentonite clay composite as a highly effective and low-cost adsorbent for the removal of doxycycline hydrochloride antibiotic and mercury ions in water. Journal of Hazardous Materials, 368, pp. 33-41. DOI:10.1016/j.jhazmat.2019.01.026
  55. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical society, 40(9), pp. 1361-1403. DOI:10.1021/ja02242a004
  56. Lee, C., Lee, S., Park, J., Park, C., Lee, S. J., Kim, S., An, B., Yun, S., Lee, S. & Choi, J. (2017). Removal of copper, nickel and chromium mixtures from metal plating wastewater by adsorption with modified carbon foam. Chemosphere, 166, pp. 203-211. DOI:10.1016/j.chemosphere.2016.09.093
  57. Lin, S. & Juang, R. (2002). Heavy metal removal from water by sorption using surfactant-modified montmorillonite. Journal of Hazardous Materials, 92(3), pp. 315-326. DOI:10.1016/S0304-3894(02)00026-2
  58. Liu, C., Wu, P., Zhu, Y. & Tran, L. (2016). Simultaneous adsorption of Cd2+ and BPA on amphoteric surfactant activated montmorillonite. Chemosphere, 144, pp. 1026-1032. DOI:10.1016/j.chemosphere.2015.09.063
  59. Long, H., Wu, P. & Zhu, N. (2013). Evaluation of Cs+ removal from aqueous solution by adsorption on ethylamine-modified montmorillonite. Chemical Engineering Journal, 225, pp. 237-244. DOI:10.1016/j.cej.2013.03.088
  60. Ma, J. & Zhu, L. (2006). Simultaneous sorption of phosphate and phenanthrene to inorgano–organo-bentonite from water. Journal of Hazardous Materials, 136(3), pp. 982-988. DOI:10.1016/j.jhazmat.2006.01.046
  61. Ma, J. & Zhu, L. (2007). Removal of phenols from water accompanied with synthesis of organobentonite in one-step process. Chemosphere, 68(10), pp. 1883-1888. DOI:10.1016/j.chemosphere.2007.03.002
  62. Ma, L., Chen, Q., Zhu, J., Xi, Y., He, H., Zhu, R., Tao, Q. & Ayoko, G. A. (2016). Adsorption of phenol and Cu(II) onto cationic and zwitterionic surfactant modified montmorillonite in single and binary systems. Chemical Engineering Journal, 283, pp. 880-888. DOI:10.1016/j.cej.2015.08.009
  63. Matthes, W., Madsen, F. T. & Kahr, G. (1999). Sorption of heavy-metal cations by Al and Zr-hydroxy-intercalated and pillared bentonite. Clays and Clay Minerals, 47(5), pp. 617-629. DOI:10.1346/CCMN.1999.0470508
  64. Meng, Z., Zhang, Y. & Zhang, Z. (2008). Simultaneous adsorption of phenol and cadmium on amphoteric modified soil. Journal of Hazardous Materials, 159(2), pp. 492-498. DOI:10.1016/j.jhazmat.2008.02.045
  65. Nourmoradi, H., Nikaeen, M. & Khiadani Hajian, M. (2012). Removal of benzene, toluene, ethylbenzene and xylene (BTEX) from aqueous solutions by montmorillonite modified with nonionic surfactant: Equilibrium, kinetic and thermodynamic study. Chemical Engineering Journal, 191, pp. 341-348. DOI:10.1016/j.cej.2012.03.029
  66. Pal, A., Jayamani, J. & Prasad, R. (2014). An urgent need to reassess the safe levels of copper in the drinking water: Lessons from studies on healthy animals harboring no genetic deficits. NeuroToxicology, 44, pp. 58-60. DOI:10.1016/j.neuro.2014.05.005
  67. Park, Y., Ayoko, G. A., Horváth, E., Kurdi, R., Kristof, J. & Frost, R. L. (2013). Structural characterisation and environmental application of organoclays for the removal of phenolic compounds. Journal of Colloid and Interface Science, 393, pp. 319-334. DOI:10.1016/j.jcis.2012.10.067
  68. Qu, Y., Qin, L., Liu, X. & Yang, Y. (2020). Reasonable design and sifting of microporous carbon nanosphere-based surface molecularly imprinted polymer for selective removal of phenol from wastewater. Chemosphere, 251, 126376. DOI:10.1016/j.chemosphere.2020.126376
  69. Redlich, O. & Peterson, D. L. (1959). A useful adsorption isotherm. Journal of physical chemistry, 63(6), 1024. DOI:10.1021/j150576a611
  70. Ren, S., Meng, Z., Sun, X., Lu, H., Zhang, M., Lahori, A. H. & Bu, S. (2020). Comparison of Cd2+ adsorption onto amphoteric, amphoteric-cationic and amphoteric-anionic modified magnetic bentonites. Chemosphere, 239, 124840. DOI:10.1016/j.chemosphere.2019.124840
  71. Senturk, H. B., Ozdes, D., Gundogdu, A., Duran, C. & Soylak, M. (2009). Removal of phenol from aqueous solutions by adsorption onto organomodified Tirebolu bentonite: Equilibrium, kinetic and thermodynamic study. Journal of Hazardous Materials, 172(1), pp. 353-362. DOI:10.1016/j.jhazmat.2009.07.019
  72. Taffarel, S. R. & Rubio, J. (2010). Adsorption of sodium dodecyl benzene sulfonate from aqueous solution using a modified natural zeolite with CTAB. Minerals Engineering, 23(10), pp. 771-779. DOI:10.1016/j.mineng.2010.05.018
  73. Tri, N. L. M., Thang, P. Q., Van Tan, L., Huong, P. T., Kim, J., Viet, N. M., Phuong, N. M. & Al Tahtamouni, T. M. (2020). Removal of phenolic compounds from wastewaters by using synthesized Fe-nano zeolite. Journal of Water Process Engineering, 33, 101070. DOI:10.1016/j.jwpe.2019.101070
  74. Veli, S. & Alyüz, B. (2007). Adsorption of copper and zinc from aqueous solutions by using natural clay. Journal of Hazardous Materials, 149(1), pp. 226-233. DOI:10.1016/j.jhazmat.2007.04.109
  75. Wang, G., Wang, X., Zhang, S., Ma, S., Wang, Y. & Qiu, J. (2020). Adsorption of heavy metal and organic pollutant by organo-montmorillonites in binary-component system. Journal of Porous Materials, 27(5), pp. 1515-1522. DOI:10.1007/s10934-020-00927-8
  76. Wang, G., Zhang, S., Hua, Y., Su, X., Ma, S., Wang, J., Tao, Q., Wang, Y. & Komarneni, S. (2017). Phenol and/or Zn2+ adsorption by single- or dual-cation organomontmorillonites. Applied Clay Science, 140, pp. 1-9. DOI:10.1016/j.clay.2017.01.023
  77. Yan, L., Shan, X., Wen, B. & Zhang, S. (2007). Effect of lead on the sorption of phenol onto montmorillonites and organo-montmorillonites. Journal of Colloid and Interface Science, 308(1), pp. 11-19. DOI:10.1016/j.jcis.2006.12.027
  78. Yang, G., Tang, L., Zeng, G., Cai, Y., Tang, J., Pang, Y., Zhou, Y., Liu, Y., Wang, J., Zhang, S. & Xiong, W. (2015). Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chemical Engineering Journal, 259, pp. 854-864. DOI:10.1016/j.cej.2014.08.081
  79. Yoo, J., Choi, J., Lee, T. & Park, J. (2004). Organobentonite for sorption and degradation of phenol in the presence of heavy metals. Water, Air, and Soil Pollution, 154(1), pp. 225-237. DOI:10.1023/B:WATE.0000022970.21712.64
  80. Yu, K., Xu, J., Jiang, X., Liu, C., McCall, W. & Lu, J. (2017). Stabilization of heavy metals in soil using two organo-bentonites. Chemosphere, 184, pp.884-891. DOI:10.1016/j.chemosphere.2017.06.040
  81. Zendelska, A., Golomeova, M., Golomeov, B. & Krstev, B. (2018). Removal of lead ions from acid aqueous solutions and acid mine drainage using zeolite bearing tuff. Archives of Environmental Protection, 44(1), pp. 87-96. DOI:10.24425/118185
  82. Zhu, R., Chen, Q., Zhou, Q., Xi, Y., Zhu, J. & He, H. (2016). Adsorbents based on montmorillonite for contaminant removal from water: A review. Applied Clay Science, 123, pp. 239-258. DOI:10.1016/j.clay.2015.12.024

Date

2022.09.19

Type

Article

Identifier

DOI: 10.24425/aep.2022.142688

DOI

10.24425/aep.2022.142688

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×