Details
Title
Procedure for detoxication of linuron contaminated soil based on ozonation and fluidization processJournal title
Archives of Environmental ProtectionYearbook
2022Volume
48Issue
3Affiliation
Józefczyk, Radosław : University of Rzeszów, Poland ; Antos, Piotr : Rzeszow University of Technology, Poland ; Pieniążek, Marcin : University of Rzeszów, Poland ; Balawejder, Maciej : University of Rzeszów, PolandAuthors
Keywords
inuron degradation ; soil contamination ; detoxication ; earthworms ; Eisenia foetidaDivisions of PAS
Nauki TechniczneCoverage
48-56Publisher
Polish Academy of SciencesBibliography
- Abu Ghalwa, N., Hamada, M., Abu Shawish, H. M. & Shubair O. (2016). Electrochemical degradation of linuron in aqueous solution using Pb/PbO2 and C/PbO2 electrodes. Arabian Journal of Chemistry 9, pp. 821–828. DOI:10.1016/j.arabjc.2011.08.006
- Antos, P., Józefczyk, R., Kisała, J. & Balawejder, M. (2012). Remediation of imidacloprid contaminated soil - comparison of two different reactors for the ozone treatment. Xe-nobiotics, Soil, Food and Human Health Interactions, Rzeszów ISBN 978-83-7338-785-0, pp. 147-158
- Assokeng, T., Noumi, G. B., Adjia, H.Z. & Sieliechi, J. M. (2021). Assessment of the Risk of Contaminating Soil Cultivation Fruits and Vegetables by Linuron Residues in the Market Gardening Zone in Marza in Ngaoundere – Cameroon. Resources and Envi-ronment 11(1): pp. 1-8 DOI:10.5923/j.re.20211101.01
- Balawejder, M., Antos, P., Czyjit Kuryło, S., Józefczyk, R. & Pieniążek, M. (2014). A novel metod for remediation of DDT contaminated soil. Ozone Science&Engineering, 36, pp.166-173. DOI:10.1080/01919512.2013.861324
- Balawejder, M., Antos, P., Józefczyk, R. & Pieniążek, M. (2016a). A method for remediation of soil contaminated with simazine. Archives of Environmental Protection, 42(3), pp. 41–46. DOI:10.1515/aep-2016-0024
- Balawejder, M., Józefczyk, R., Antos, P. & Pieniążek, M. (2016b). Pilot-scale Installation for Remediation of DDT-contaminated soil. Ozone: Science & Engineering, 38, pp. 272-278. DOI:10.1080/01919512.2015.1136556
- Barchańska, H., Czaplicka, M. & Kyzioł-Komosińska, J. (2020). Interaction of selected pesticides with mineral and organic soil components. Archives of Environmental Protection, 46 (3), pp. 80–91. DOI:10.24425/aep.2020.134538
- Boughattas, I., Hattab, S., Boussetta, H., Sappin-Didier, V., Viarengo, A., Banni, M. & Sforzini, S. (2016). Biomarker responses of Eisenia andrei to a polymetallic gradient near a lead mining site in North Tunisia. Environmental Pollution, 218 pp. 530-541. DOI:10.1016/j.envpol.2016.07.033
- Buleandra, M., Popa, D.E., David, I.G., Bacalum, E., David, V. & Ciucu, A.A. (2019). Electrochemical behavior study of some selected phenylurea herbicides at activated pencil graphite electrode. Electrooxidation of linuron and monolinuron. Microchemical Journal, 147, pp. 1109–1116. DOI:10.1016/j.microc.2019.04.042
- Fenoll, J., Martínez-Menchón, M., Navarro, G., Vela, N. & Navarro, S. (2013). Photocatalytic degradation of substituted phenylurea herbicides in aqueous semiconductor suspensions exposed to solar energy. Chemosphere, 91, pp. 571–578. DOI:10.1016/j.chemosphere.2012.11.067
- Hankard, P.K., Svendsen, C., Wright, J., Weinberg, C., Fishwick, S.K., Spurgeon, D.J. & Weeks, J.M. (2004). Biological assessment of contaminated land using earthworm biomarkers in support of chemical analysis. Sci. Total Environ., 330, pp. 9-20. DOI:10.1016/j.scitotenv.2003.08.023
- Katsumata, H., Kobayashi, T., Kaneco, S., Suzuki, T. & Ohta, K. (2011) Degradation of linuron by ultrasound combined with photo-Fenton treatment. Chemical Engineering Journal, 166, pp. 468–473. DOI:10.1016/j.cej.2010.10.073
- Kuo, S. L. & Wu, E.M.-Y. (2021). Remediation Efficiency of the In Situ Vitrification Method at an Unidentified-Waste and Groundwater Treatment Site. Water, 13, 3594. DOI:10.3390/w13243594
- Liu, T., Liu, Y., Fang, K., Zhang, X. & Wang, X. (2020). Transcriptome, bioaccumulation and toxicity analyses of earthworms (Eisenia fetida) affected by trifloxystrobin and trifloxystrobin acid. Environmental Pollution, 265, Part B, 115100. DOI:10.1016/j.envpol.2020.115100
- Lowe, C. N. & Butt, K. R. (2007). Earthworm culture, maintenance and species selection in chronic ecotoxicological studies: A critical review. European Journal of Soil Biology, 43, pp. 281-288. DOI:10.1016/j.ejsobi.2007.08.028
- Lowe, C.N. & Butt, K.R. (2005). Culture techniques for soil dwelling earthworms: a review. Pedobiologia, 49 (5), pp. 401-413. DOI:10.1016/j.pedobi.2005.04.005
- Moore, M.N. (1976). Cytochemical demonstration of latency of lysosomal hydrolases in the digestive cells of the common mussel, Mytilus edulis, and changes induced by thermal stress. Cell. Tissue Res. 175, pp. 279-287. DOI:10.1007/BF00218706
- Mussatto, S.I. (2016). Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, ISBN 978-0-12-802323-5 pp. 410-411
- OECD Guideline For Testing Of Chemicals No. 207: Earthworm, Acute Toxicity Tests (Eisenia fetida/Eisenia Andrei), OECD 1984. DOI:10.1787/9789264070042-en
- OECD Guideline For Testing Of Chemicals No. 222: Earthworm Reproduction Test (Eisenia fetida/Eisenia Andrei), OECD 2004 https://www.oecd.org/env/ehs/testing/Draft-Updated-Test-Guildeline-222-Earthworm-reproduction-Test.pdf
- Quan, X., Zhao, X., Chen, S., Zhao, H., Chen, J. & Zhao, Y. (2005). Enhancement of p,p’-DDT photodegradation on soil surfaces using TiO2 induced by UV-light, Chemosphere, 60, pp. 266-273. DOI:10.1016/j.chemosphere.2004.11.044
- Rao, Y.F. & Chu, W. (2010). Degradation of linuron by UV, ozonation, and UV/O3 processes—Effect of anions and reaction mechanism. Journal of Hazardous Materials, 180, pp. 514–523. DOI:10.1016/j.jhazmat.2010.04.063
- Rosal, R., Gonzalo, M. S., Rodríguez, A., Perdigón-Melón, J.A. & García-Calvo, E. (2010). Catalytic ozonation of atrazine and linuron on MnOx/Al2O3 and MnOx/SBA-15 in a fixed bed reactor. Chemical Engineering Journal, 165, pp. 806–812. DOI:10.1016/j.cej.2010.10.020
- Sforzini, S., Moore, M.N., Boeri, M., Bencivenga, M. & Viarengo, A. (2015). Effects of PAHs and dioxins on the earthworm Eisenia andrei: A multivariate approach for biomarker interpretation. Environmental Pollution, 196 pp. 60-71. DOI:10.1016/j.envpol.2014.09.015
- Svendsen, C., Spurgeon, D.J., Hankard, P.K. & Weeks, J.M. (2004). A review of lysosomal membrane stability measured by neutral red retention: is it a workable earthworm biomarker?. Ecotoxicology and Environmental Safety, 57, pp. 20–29. DOI:10.1016/j.ecoenv.2003.08.009
- Svendsen, C., Meharg, A.A., Freestone, P. & Weeks, J.M. (1996). Use of an earthworm lysosomal biomarker for the ecological assessment of pollution from an industrial plastics fire. Soil Ecology, 3, pp. 99-107. DOI:10.1016/0929-1393(95)00085-2
- Spirhanzlova, P., De Groef, B., Nicholson, F.E., Grommen, S.V.H., Marras, G., Sébillot, A., Demeneix, B.A., Pallud-Mothré, S., Lemkine, G.F., Tindall, A.J. & Du Pasquier, D. (2017). Using short-term bioassays to evaluate the endocrine disrupting capacity of the pesticides linuron and fenoxycarb. Comparative Biochemistry and Physiology, Part C, 200, pp. 52–58. DOI:10.1016/j.cbpc.2017.06.006
- Swarcewicz, M., Gregorczyk, A. & Sobczak, J. (2013). Comparison of linuron degradation in the presence of pesticide mixtures in soil under laboratory conditions. Environ Monit Assess, 185, pp. 8109–8114. DOI:10.1007/s10661-013-3158-7
- Zhao, S., Wang, Y. & Duo, L. (2021). Biochemical toxicity, lysosomal membrane stability and DNA damage induced by graphene oxide in earthworms. Environmental Pollution, 269, 116225. DOI:10.1016/j.envpol.2020.116225
Date
2022.09.19Type
ArticleIdentifier
DOI: 10.24425/aep.2022.142689DOI
10.24425/aep.2022.142689Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science