Details

Title

Humidity Migration in Surface Layers of Sand Moulds During Processes of Penetration and Drying of Protective Coatings

Journal title

Archives of Foundry Engineering

Yearbook

2022

Volume

vol. 22

Issue

No 4

Affiliation

Jamrozowicz, Ł. : AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Cast Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland ; Zych, J. : AGH University of Science and Technology, Faculty of Foundry Engineering, Department of Moulding Materials, Mould Technology and Cast Non-Ferrous Metals, Al. Mickiewicza 30, 30-059 Kraków, Poland

Authors

Keywords

Core ; Sand mould ; Porous medium ; Humidity migration ; Protective coatings ; Resistance measurement

Divisions of PAS

Nauki Techniczne

Coverage

72-78

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Pigoń, K., Ruziewicz, Z. (2005). Physical chemistry. Phenomenological foundations. Warszawa: PWN, (in Polish) [2] Zarzycki, R. (2005). Heat transfer and mass movement in environmental engineering. Warszawa: Wydawnictwo Naukowo-Techniczne. (in Polish) [3] Płoński, W., Pogorzelski, J. (1979). Building physics. Warszawa: Arkady. (in Polish) [4] Świrska-Perkowska, J. (2012). Adsorption and movement of moisture in porous building materials under isothermal conditions. Warszawa: Komitet Inżynierii Lądowej i Wodnej PAN. (in Polish) [5] Kubik, J. (2000). Moisture flows in building materials. Opole: Oficyna Wydawnicza Politechniki Opolskiej. (in Polish) [6] Gawin, D. (2000). Modeling of coupled hygrothermal phenomena in building materials and elements. Łódź: Politechnika Łódzka. (in Polish) [7] Rose, D. (1963). Water movement in porous materials. Part 1: isothermal vapour transfer. British Journal of Applied Physics. (14), 256-262. DOI:10.1088/0508-3443/14/5/308. [8] Rose, D. (1963): Water movement in porous materials. part 2: the separation of the components of water movement. British Journal of Applied Physics. (14), 491-496. DOI: 10.1088/0508-3443/14/8/310. [9] Marynowicz, A., Wyrwał, J. (2005). Testing the moisture properties of selected building materials under isothermal conditions. Warszawa: INB ZTUREK. (in Polish) [10] Kiessl, K. (1983) Kapillarer und dampffoermiger Fauchtetransport in mahrschichtigen Bauteilen. Essen: Dissertation. University Essen. [11] Politechnika Gdańska. The process of drying food substances - laboratory exercises. Retrieved January, 2022, from https://mech.pg.edu.pl/documents/4555684/4565480/suszenie.pdf (in Polish). [12] Baranowski, J., Melech, S., Adamski, P. (2002). Temperature and humidity control systems in the processes of drying food products. Zielona Góra: VI Sympozjum Pomiary i Sterowanie w Procesach Przemysłowych. (in Polish) [13] Ważny, J., Karyś, J. (2001). Protection of buildings against biological corrosion. Warszawa: Arkady. (in Polish) [14] Brooker, D., Bakker-Arkema, F., Hall, C. (1992). Drying and Storage of Grains and Oilseeds. New York: Van Nostrand Reinhold. [15] Reeds, J. (1991). Drying. ASM International Handbook Committee. 131-134. [16] Pel, L., Sawdy, A. & Voronina, V. (2010). Physical principles and efficiency of salt extraction by poulticing. Journal of Cultural Heritage. 11(1), 59-67. DOI:10.1016/j.culher. 2009.03.007. [17] Hii, C., Law, C. & Cloke, M. (2008). Modelling of thin layer drying kinetics of cocoa beans during artificial and natural drying. Journal of Engineering Science and Technology. 3(1), 1-10. [18] Zych, J. & Kolczyk, J. (2013). Kinetics of hardening and drying of ceramic moulds with the new generation binder – colloidal silica. Archives of Foundry Engineering. 13(4), 112-116. DOI: 10.2478/afe-2013-0093. [19] Kolczyk J. & Zych J. (2014). The kinetics of hardening and drying of ceramic molds with a new generation binder - colloidal silica. Przegląd Odlewnictwa. 64(3-4), 84-92. (in Polish) [20] Zych, J., Kolczyk, J. & Jamrozowicz, Ł. (2015). The influence of the shape of wax pattern on the kinetics of drying of ceramic moulds. Metalurgija. 54(1), 15-18. ISSN 0543-5846. [21] Jamrozowicz, Ł., Zych, J. & Kolczyk, J. (2015). The drying kinetics of protective coatings used on sand molds. Metalurgija. 54(1), 23-26. ISSN 0543-5846. [22] Jamrozowicz, Ł. & Siatko, A. (2020). The assessment of the permeability of selected protective coatings used for sand moulds and cores. Archives of Foundry Engineering. 20(1), 17-22. DOI: 10.24425/afe.2020.131276. [23] Jamrozowicz, Ł., Kolczyk-Tylka, J. & Siatko, A. (2018) Investigations of the thickness of protective coatings deposited on moulds and cores. Archives of Foundry Engineering. 18(4), 131-136. DOI: 10.24425/afe.2018. 125182. [24] Zych, J. & Snopkiewicz, T. (2010). Drying and hardening of ceramic moulds used in a modern investemnt casting technique – investigations of the process kinetics. Foundry Journal of the Polish Foundrymen's Association. 9-10, 506-512. [25] Zych, J., Snopkiewicz, T. (2018). Method for study the drying process self-hardening molding sand or core compound. Patent PL 228373 B1.

Date

2022.12.16

Type

Article

Identifier

DOI: 10.24425/afe.2022.143952
×