Details

Title

Determining parameters to optimize the pulling force for the luffing jib tower cranes by Taguchi method

Journal title

Archive of Mechanical Engineering

Yearbook

2023

Volume

vol. 70

Issue

No 3

Affiliation

Duong, Truong Giang : Faculty of Mechanical Engineering, Hanoi University of Civil Engineering, Hanoi, Vietnam

Authors

Keywords

geometric size ; luffing jib ; optimal technique ; pulling force ; Taguchi method

Divisions of PAS

Nauki Techniczne

Coverage

387-407

Publisher

Polish Academy of Sciences, Committee on Machine Building

Bibliography

[1] H. Hyun, M. Park, D. Lee, and J.Lee. Tower crane location optimization for heavy unit lifting in high-rise modular construction. Buildings, 11(3):121, 2021. doi: 10.3390/buildings11030121.
[2] T.G. Duong. Research on fundamental calculation of tower cranes examining into the elastic deflections of tower bod. Journal of Science and Technology in Civil Engineering, 11(4):139–144, 2017. https://stce.huce.edu.vn/index.php/vn/article/view/652.
[3] T.G. Duong. Selecting control method of hydraulic resistances in hydraulic system for tower crane climbing mechanism. Journal of Science and Technology in Civil Engineering,14(3V):140–148, 2020. doi: 10.31814/stce.nuce2020-14(3V)-13.
[4] B. Li, L. Lei, and B. Liu. Research of tower crane suspended climb supporting system. Applied Mechanics and Materials, 130-134:1889–1893, 2012. doi: 10.4028/www.scientific.net/AMM.130-134.1889.
[5] S. Chwastek. Optimization of crane mechanisms to reduce vibration. Automation in Construction, 119:103335, 2020. doi: 10.1016/j.autcon.2020.103335.
[6] S. Chwastek. Finding the globally optimal correlation of cranes drive mechanisms. Mechanics Based Design of Structures and Machines, 51(6):3230–3241, 2023. doi: 10.1080/15397734.2021.1920978.
[7] Y. Xue, M.S. Ji, N. Wu, Y. Xue, and W. Wang. The dimensionless-parameter robust optimization method based on geometric approach of pulley block compensation in luffing mechanism. In: Proceedings of the 2015 International Conference of Electrical, Automation and Mechanical Engineering, pages 157–160, Atlantis Press 2015. doi: 10.2991/eame-15.2015.43.
[8] X. Li. Truss structure optimum design and its engineering application. Computers \amp; Structures, 36(3): 567–573, 1990. doi: 10.1016/0045-7949(90)90291-9.
[9] R. Šelmić, P. Cvetković, R. Mijailović, and G. Kastratović. Optimum dimensions of triangular cross-section in lattice structures. Meccanica, 41:391–406, 2006. doi: 10.1007/s11012-005-5337-2.
[10] R. Mijailović and G. Kastratović. Cross-section optimization of tower crane lattice boom. Meccanica, 44:599–611,2009. doi: 10.1007/s11012-009-9204-4.
[11] J. Wang, L. Li, and L. Hao. APDL-based optimization of the boom of luffing jib tower cranes. Advanced Materials Research, 291-294:2566–2573, 2011. doi: 10.4028/www.scientific.net/AMR.291-294.2566.
[12] Q. Wu, Q. Zhou, X. Xiong and R. Zhang. Periodic topology and size optimization design of tower crane boom. International Scholarly and Scientific Research \amp; Innovation, 11(8), 2017. doi: 10.5281/zenodo.1131629.
[13] X-L. Cheng, H-L. Yang, and B. Zhu. Structure lightweight design of luffing jib tower crane jib. Machine Tool \amp; Hydraulics, 46(18): 81–86,99, 2018. doi: href="https://doi.org/10.3969/j.issn.1001-3881.2018.18.012">10.3969/j.issn.1001-3881.2018.18.012.
[14] D.S. Kim and J. Lee. Structural design of a level-luffing crane through trajectory optimization and strength-based size optimization. Structural and Multidisciplinary Optimization, 51: 515–531, 2015. doi: 10.1007/s00158-014-1139-2.
[15] Q. Jiao, Y. Qin, Y. Han, and J. Gu. Modeling and optimization of pulling point position of luffing jib on portal crane. Mathematical Problems in Engineering, 2021: 4627257, 2021. doi: 10.1155/2021/4627257.
[16] FEM 1.001: Rules for the Design of Hoisting Appliances (3rd Edition Revised 1998.10.01).
[17] R.V. Rao and V.J. Savsani. Mechanical Design Optimization Using Advanced Optimization Techniques. Springer, 2012.
[18] A. Arunkumar, S. Ramabalan, and D. Elayaraja. Optimum design of stair-climbing robots using Taguchi method. Intelligent Automation\amp; Soft Computing, 35(1):1229–1244, 2023. doi: 10.32604/iasc.2023.027388.
[19] M. Milos, I. Lozica, P. Nenad, and K. Nenad. Determination of the most influential factor during the rope winding process around winch drums using Taguchi method. 8th Iinternational Conference on Tribology, pages 794-798, 2014, Sinaia, Romania.
[20] P.J. Gamez-Montero, and E. Bernat-Maso. Taguchi techniques as an effective simulation-based strategy in the design of numerical simulations to assess contact stress in gerotor pumps. Energies, 15(19):7138, 2022. doi: 10.3390/en15197138.
[21] D-C. Chen, C-S. You, F-L. Nian, and M-W. Guo. Using the Taguchi method and finite element method to analyze a robust new design for titanium alloy prick hole extrusion, Procedia Engineering, 10:82–87, 2011. doi: 10.1016/j.proeng.2011.04.016.
[22] H-J. Chen, H-C. Lin, C-W .Tang. Application of the Taguchi method for optimizing the process parameters of producing controlled low-strength materials by using dimension stone sludge and lightweight aggregates. Sustainability, 13(10):5576, 2021. doi: 10.3390/su13105576.
[23] R. Barea, S. Novoa, F. Herrera, B. Achiaga, and N. Candela. A geometrical robust design using the Taguchi method: application to a fatigue analysis of a right angle bracket. DYNA, 85(205):37–46, 2018. doi: 10.15446/dyna.v85n205.67547.
[24] T. G. Duong. Instructions Manual for Calculating the Lifting Machine. Construction Publisher, Hanoi, Vietnam, 2019.

Date

3.08.2023

Type

Article

Identifier

DOI: 10.24425/ame.2023.146845 ; ISSN 0004-0738, e-ISSN 2300-1895
×