Details

Title

Vibration sensing with the optical fibre Mach-Zehnder interferometer

Journal title

Opto-Electronics Review

Yearbook

2023

Volume

31

Issue

4

Authors

Affiliation

Kurzych, Anna T. : Institute of Technical Physics, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland ; Jaroszewicz, Leszek R. : Institute of Technical Physics, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland

Keywords

Mach-Zehnder interferometer ; vibration sensor ; optical fibre technology

Divisions of PAS

Nauki Techniczne

Coverage

e148992

Publisher

Polish Academy of Sciences (under the auspices of the Committee on Electronics and Telecommunication) and Association of Polish Electrical Engineers in cooperation with Military University of Technology

Bibliography

  1. Mohd Ghazali, M. H. & Rahiman, W. Vibration analysis for machine monitoring and diagnosis: A systematic review. Shock. Vib. 2021, 9469318 (2021). https://doi.org/10.1155/2021/9469318

  2. Jafari, M. & Alipour, A. Methodologies to mitigate wind-induced vibration of tall buildings: A state-of-the-art review. J. Build. Eng. 33, 101582 (2021). https://doi.org/10.1016/j.jobe.2020.101582

  3. Hou, R. & Xia, Y. Review on the new development of vibration- based damage identification for civil engineering structures: 2010– 2019. J. Sound Vib. 491, 115741 (2021). https://doi.org/10.1016/j.jsv.2020.115741

  4. Agrawal, H. & Mishra, A. K. An innovative technique of simplified signature hole analysis for prediction of blast-induced ground vibration of multi-hole/production blast: an empirical analysis. Nat. Hazards 100, 111–132 (2020). https://doi.org/10.1007/s11069-019-03801-2

  5. Yan, Y., Li, T., Liu, J., Wang, W. & Su, Q. Monitoring and early warning method for a rockfall along railways based on vibration signal characteristics. Sci. Rep. 9, 6606 (2019). https://doi.org/10.1038/s41598-019-43146-1

  6. Feng, Z. & Yufeng, Z. Research Progress of Mechanical Vibration Sensors. in 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM) 412–416 (IEEE, 2020). https://doi.org/10.1109/WCMEIM52463.2020.00093

  7. Wang, Y. et al. A comprehensive study of optical fiber acoustic sensing. IEEE Access 7, 85821–85837 (2019). https://doi.org/10.1109/Access.2019.2924736

  8. Liu, X. et al. Distributed fiber-optic sensors for vibration detection.Sensors 16, 1164 (2016). https://doi.org/10.3390/S16081164

  9. Varanis, M., Silva, A., Mereles, A. & Pederiva, R. MEMS accelerometers for mechanical vibrations analysis: A comprehensive review with applications. J. Braz. Soc. Mech. Sci. 40, 527 (2018). https://doi.org/10.1007/s40430-018-1445-5

  10. Perrone, G. & Vallan, A. A low-cost optical sensor for noncontact vibration measurements. IEEE Trans. Instrum. Meas. 58, 1650– 1656 (2009). https://doi.org/10.1109/tim.2008.2009144

  11. Castrellon-Uribe, J. Optical Fiber Sensors: An Overview. in Fiber Optic Sensors (eds. Yasin, M., Harun, S. W. & Arof, H.) 1–28 (InTech, 2012). https://doi.org/10.5772/28529

  12. Bado, M. F. & Casas, J. R. A review of recent distributed optical fiber sensors applications for civil engineering structural health moni- toring. Sensors 21, 1818 (2021). https://doi.org/10.3390/s21051818

  13. Liaw, S. Introductory Chapter: An Overview the Methodologies and Applications of Fiber Optic Sensing. in Fiber Optic Sensing - Principle, Measurement and Applications (ed. Liaw, S.-K.) ch. 1 (IntechOpen, 2019). https://doi.org/10.5772/intechopen.86525

  14. Webb, D. J. Optical-fiber sensors: An overview. MRS Bull. 27, 365– 369 (2002). https://doi.org/10.1557/mrs2002.121

  15. Méndez, A. & Csipkes, A. Overview of Fiber Optic Sensors for NDT Applications. in Nondestructive Testing of Materials and Structures (eds. Güneş, O. & Akkaya, Y.) 179–184 (Springer, 2013). https://doi.org/10.1007/978-94-007-0723-8_26

  16. Bang, H.-J., Jun, S.-M. & Kim, Ch.-G. Stabilized interrogation and multiplexing techniques for fibre Bragg grating vibration sensors. Meas. Sci. Technol. 16, 813 (2005). https://doi.org/10.1088/0957-0233/16/3/024

  17. Liang, T.-Ch. & Lin, Y.-L. Ground vibrations detection with fiber optic sensor. Opt. Commun. 285, 2363–2367 (2012). https://doi.org/10.1016/j.optcom.2012.01.037

  18. Lu, L., Cao, Z., Dai, J., Xu, F. & Yu, B. Self-mixing signal in er3+−yb3+ codoped distributed bragg reflector fiber laser for remote sensing applications up to 20 km. IEEE Photon. Technol. Lett. 24, 392–394 (2012). https://doi.org/10.1109/LPT.2011.2179922

  19. Lu, L., Yang, J., Zhao, Y., Du, Z. & Yu, B. Self-mixing interference in an all-fiberized configuration Er3+–Yb3+ codoped distributed Bragg reflector laser for vibration measurement. Curr. Appl. Phys. 12, 659–662 (2012). https://doi.org/10.1016/j.cap.2011.09.018

  20. Wang, C. et al. Quasi-distributed fiber sensor based on Fresnel- reflection-enhanced Incomplete-POTDR system. Proc. SPIE 9634, 96347F (2015). https://doi.org/10.1117/12.2194481

  21. Muanenda, Y., Oton, C. J., Faralli, S. & Di Pasquale, F. A cost- effective distributed acoustic sensor using a commercial off-the- shelf DFB laser and direct detection phase-OTDR. IEEE Photon. J. 8, 1–10 (2016). https://doi.org/10.1109/JPHOT.2015.2508427

  22. Ren, M., Lu, P., Chen, L. & Bao, X. Theoretical and experimental analysis of Φ-OTDR based on polarization diversity detection. IEEE Photon. Technol. Lett. 28, 697–700 (2015). https://doi.org/10.1109/LPT.2015.2504968

  23. Zhang, Q., Zhu, T., Hou, Y. & Chiang, K. S. All-fiber vibration sensor based on a Fabry Perot interferometer and a microstructure beam, J. Opt. Soc. Am. B 30, 1211–1215 (2013). https://doi.org/10.1364/JOSAB.30.001211

  24. Sathitanon, N. & Pullteap, S. A fiber optic interferometric sensor for dynamic measurement. Proc. World Acad. Sci. Eng. Technol. (PWASET) 26, 526–529 (2007).

  25. Giuliani, G., Norgia, M., Donati, S. & Bosch, T. Laser diode self- mixing technique for sensing applications. J. Opt. 4, S283 (2002). https://doi.org/10.1088/1464-4258/4/6/371

  26. Castellini, P., Martarelli, M. & Tomasini, E. Laser Doppler vibrometry: development of advanced solutions answering to technology’s need. Mech. Syst. Signal Process. 20, 1265–1285 (2006). https://doi.org/10.1016/j.ymssp.2005.11.015

  27. Chijioke, A. & Lawall, J. Laser Doppler vibrometer employing active frequency feedback. App. Opt. 47, 4952–4958 (2008). https://doi.org/10.1364/AO.47.004952

  28. Antunes, P. et al. Optical fiber accelerometer system for structural dynamic monitoring. IEEE Sens. J. 9, 1347–1354 (2009). https://doi.org/10.1109/JSEN.2009.2026548

  29. Liu, Q. P. et al. Novel fiber Bragg grating accelerometer based on diaphragm. IEEE Sens. J. 12, 3000–3004 (2012). https://doi.org/10.1109/JSEN.2012.2201464

  30. Guo, F. et al. High-sensitivity, high-frequency extrinsic Fabry–Perot interferometric fiber-tip sensor based on a thin silver diaphragm. Opt. Lett. 37, 1505–1507 (2012). https://doi.org/10.1364/OL.37.001505

  31. Wang, S. et al. An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure. IEEE Photon. Technol. Lett. 28, 1264–1267 (2016). https://doi.org/10.1109/LPT.2016.2538318

  32. Xie, S., Zhang, M., Li, Y. & Liao, Y. The influence of fiber inhomogeneity on the positioning accuracy of distributed fiber vibration sensor. Proc. SPIE 8561, 85610O (2012). https://doi.org/10.1117/12.999841

  33. Tu, D., Xie, S., Jiang, Z. & Zhang, M. Ultra long distance distributed fiber-optic system for intrusion detection. Proc. SPIE 8561, 85611W (2012). https://doi.org/10.1117/12.2001292

  34. Rao, Y. et al. Long-distance fiber-optic Φ-OTDR intrusion sensing system. Proc. SPIE 7503, 75031O (2009). https://doi.org/10.1117/12.835324

  35. Sun, Z., Xu, Y., Yu, W., Zhang, G. & Fang, W. Optical fiber distributed vibration sensor based on dual Mach-Zehnder interferometer using an improved phase generated carrier algorithm. Infrared Phys. Technol. 127, 104440 (2022). https://doi.org/10.1016/j.infrared.2022.104440

  36. Udd, E. A personal tour of the fiber optic Sagnac interferometer.Proc. SPIE 7316, 73160R (2009). https://doi.org/10.1117/12.819207

  37. Chen, Q. et al. A distributed fiber vibration sensor utilizing dispersion induced walk-off effect in a unidirectional Mach-Zehnder interferometer. Opt. Express 22, 2167–2173 (2014). https://doi.org/10.1364/OE.22.002167

  38. Zhao, Y., Xia, F., Chen, M. & Lv, R. Optical fiber low-frequency vibration sensor based on butterfly-shape Mach-Zehnder interferometer. Sens. Actuator. A Phys. 273, 107–112 (2018). https://doi.org/10.1016/j.sna.2018.01.051

  39. Tsuda, H., Koo, J.-H. & Kishi, T. Detection of simulated acoustic emission with Michelson interferometric fiber-optic sensors.J. Mater. Sci. Lett. 20, 55–56 (2001). https://doi.org/10.1023/A:1006714815182

  40. He, Q. et al. All fiber distributed vibration sensing using modulated time-difference pulses. IEEE Photon. Technol. Lett. 25, 1955–1957 (2013). https://doi.org/10.1109/LPT.2013.2276124

  41. Rao, Y. J. & Jackson, D. A. Principles of Fiber-Optic Interfero- metry. in Optical Fiber Sensor Technology: Fundamentals (eds. Grattan, K. T. V. & Meggitt, B. T.) 167–192 (Springer, 2000).

  42. Culshaw, B. & Dakin, J. (eds.) Fiber-Optic Gyroscope. in Optical Fiber Sensors, Vol. 2: Systems and Applications. (Artech House, Boston London, 1989).

  43. (accessed: 12/16/2023).http://www.photonics.byu.edu/santec.parts/TSL-210.pdf

  44. Stasiewicz, K. A., Krajewski, R., Jaroszewicz, L. R., Kujawińska, M. & Świłło, R. Influence of the tapering process on optical fiber refractive index distribution changes along the structure. Opto- Electron. Rev. 18, 102–109 (2010). https://doi.org/10.2478/s11772-009-0030-y

  45. Stasiewicz, K. A. & Musiał, J. E. Threshold temperature optical fibre sensors. Opt. Fiber Technol. 32, 111–118 (2016). https://doi.org/10.1016/j.yofte.2016.10.009

Date

28.12.2023

Type

Article

Identifier

DOI: 10.24425/opelre.2023.148992

Abstracting & Indexing

Abstracting and Indexing:
Arianta
BazTech
EBSCO relevant databases
EBSCO Discovery Service
SCOPUS relevant databases
ProQuest relevant databases
Clarivate Analytics relevant databases
WangFang

additionally:
ProQuesta (Ex Libris, Ulrich, Summon)
Google Scholar
×