Details
Title
Effect of Swirl Angle on Interaction between Swirl Oxygen Lance Jet and Melt PoolJournal title
Archives of Foundry EngineeringYearbook
2024Volume
vol. 24Issue
No 1Affiliation
Ma, Haoran : College of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 3114051, China ; Liu, Kun : College of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 3114051, China ; Han, Peng : College of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 3114051, China ; Liu, Guangqiang : College of Civil Engineering, University of Science and Technology Liaoning, Anshan 114051, China ; Xu, Chengcheng : Cold rolling mill plant, ANGANG Steel Company Limited, Anshan 114021, ChinaAuthors
Keywords
Swirl oxygen ; Melt pool ; Swirl angle ; Gas-liquid interface ; Dead zoneDivisions of PAS
Nauki TechniczneCoverage
50-57Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Rao, J.P., Li, G.Q., & Yang, Z.Z. (2011). Research and application of new oxygen lance for BOF steelmaking. Advanced Materials Research. 335, 74-79. https://doi.org/10.4028/www.scientific.net/AMR.335-336.74.[2] Allemand, B., Bruchet P. & Champinot, C. (2001). Theoretical and experimental study of supersonic oxygen jets. Industrial application in EAF. Metallurgical Research & Technology. 98(6), 571-587. https://doi.org/10.1051/ metal:2001107.
[3] Li, L., Li, M. & Shao, L. (2020). Physical and mathematical modeling of swirling gas jets impinging onto a liquid bath using a novel nozzles‐twisted lance. Steel Research International. 91(7), 54-60. https://doi.org/10.1002/ srin.201900684.
[4] Wang, X. (2022). Numerical simulation of jet characteristics and gas liquid two phase behavior of swirling oxygen lance. University of Science and Technology Liaoning. https://doi.org/10.26923/d.cnki.gasgc.2021.000081.
[5] Higuchi, Y. & Tago, Y. (2003). Effect of nozzle twisted lance on jet behavior and spitting rate in top blown process. ISIJ international. 43(9), 1410-1414. https://doi.org/10.2355 /isijinternational.43.1410.
[6] Li, M., Li, Q. & Kuang, S. (2016). Computational investigation of the splashing phenomenon induced by the impingement of multiple supersonic jets onto a molten slag–metal melt pool. Industrial & Engineering Chemistry Research. 55(12), 3630-3640. https://doi.org/10.1021/ acs.iecr.5b03301.
[7] Li, Q., Li, M. & Kuang, S, B. (2014). Computational study on the behaviours of supersonic jets and their impingement onto molten liquid free surface in BOF steelmaking. Canadian Metallurgical Quarterly. 53(3), 340-351. https://doi.org/10.1179/1879139514Y.0000000124.
[8] Li, M., Li, Q. & Zou Z. (2017). Computational investigation of swirling supersonic jets generated through a nozzle-twisted lance. Metallurgical and Materials Transactions B. 48, 713-725. https://doi.org/10.1007/s11663-016-0851-2.
[9] Muñoz-Esparza, D., Buchlin, J.M. & Myrillas, K. (2012). Numerical investigation of impinging gas jets onto deformable liquid layers. Applied Mathematical Modelling. 36(6), 2687-2700. https://doi.org/10.1016/j.apm.2011.09.052.
[10] Zhou, X., Ersson, M. & Zhong, L. (2014). Mathematical and physical simulation of a top blown converter. Steel research international. 85(2), 273-281. https://doi.org/10.1002/ srin.201300310.
[11] Hu, S., Zhu, R., & Dong, K. (2018). Effect of oxygen flow rate and temperature on supersonic jet characteristics and fluid flow in an EAF molten bath. Canadian Metallurgical Quarterly. 57(2), 219-234. https://doi.org/10.1080/00084433. 2017.1409945.
[12] Wang, W., Yuan, Z., & Matsuura, H. (2010). Three-dimensional compressible flow simulation of top-blown multiple jets in converter. ISIJ International. 50(4), 491-500. https://doi.org/10.2355/isijinternational.50.491.
[13] Li, M., Li, L. & Zhang, B. (2020). Numerical analysis of the particle-induced effect on gas flow in a supersonic powder-laden oxygen jet. Metallurgical and Materials Transactions B. 51, 1718-1730. https://doi.org/10.1007/s11663-020-01855-3.
[14] Feng, C., Zhu, R. & Dong, K. (2021). Effects of ambient temperature and powder gas ratio on jet characteristics of O2+ CO2 and CaO particles injected by a swirl-type oxygen lance nozzle. Powder Technology. 388, 537-553. https://doi.org/10.1016/j.powtec.2021.04.085.
[15] Lv, M., Zhu, R. & Wang H. (2013). Simulation and application of swirl-type oxygen lance in vanadium extraction converter. Steel Research International. 84(3), 304-312. https://doi.org/10.1002/srin.201200136.
[16] Lv, M., Zhu, R. & Guo, Y.G. (2013). Simulation of flowfluid in the BOF steelmaking process. Metallurgical and Materials Transactions B. 44, 1560-1571. https://doi.org/10.1007/ s11663-013-9935-4.
[17] Alam, M., Naser, J., & Brooks, G. (2010). Computational fluid dynamics simulation of supersonic oxygen jet behavior at steelmaking temperature. Metallurgical and Materials Transactions B. 41, 636-645. https://doi.org/10.1007/s11663-010-9341-0.
[18] Liu, F., Sun, D. & Zhu, R. (2017). Effect of nozzle twisted oxygen lance on flow field and dephosphorization rate in converter steelmaking process. Ironmaking & Steelmaking. 44(9), 640-648. https://doi.org/10.1080/03019233. 2016.1226562.
[19] Zhong, L., Zhu, Y. & Jiang, M. (2005). Cold modelling of slag splashing in LD furnace by oxygen lance with twisted nozzle tip. Steel Research International. 76(9), 611-615. https://doi.org/10.1002/srin.200506065.
[20] Liu, G., Liu, K., & Han, P. (2021). Splash sheet characteristics induced by the impingement of multiple jets in a steelmaking converter. Ironmaking & Steelmaking. 48(1), 25-32. https://doi.org/10.1080/03019233.2020.1720453.