Details

Title

The Effect of Carbide Concentration at Grain Boundaries on Thermal Stresses in Castings for Heat Treatment Furnace Tooling

Journal title

Archives of Foundry Engineering

Yearbook

2024

Volume

vol. 24

Issue

No 1

Affiliation

Bajwoluk, A. : Mechanical Engineering Faculty, West Pomeranian University of Technology, Szczecin Al. Piastów 19, 70-310 Szczecin, Poland ; Gutowski, P. : Mechanical Engineering Faculty, West Pomeranian University of Technology, Szczecin Al. Piastów 19, 70-310 Szczecin, Poland

Authors

Keywords

Cast grates ; thermal stresses ; Heat treatment equipment ; Thermal shock

Divisions of PAS

Nauki Techniczne

Coverage

149-157

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

[1] Lai, G.Y. (2007). High-Temperature Corrosion and Materials Applications. ASM International.
[2] Davis, J.R. (1997). Industrial applications of heat-resistant materials. In Heat Resistant Materials. 67-85.
[3] Piekarski, B. (2012). Creep-resistant castings used in heat treatment furnaces. Szczecin: West Pomeranian University of Technology Publishing House. (in Polish).
[4] Lo, K.H., Shek, C. H., & Lai, J. K. L. (2009). Recent developments in stainless steels. Materials Science and Engineering R: Reports. 65(4-6), 39-104.
[5] Carreon, M., Ramos Azpeitia, M. O., Hernandez Rivera, J. L., Bedolla Jacuinde, A., Garcia Lopez, C. J., Ruiz Ochoa, J. A., & Gonzalez Castillo, A. C. (2023). Development of a novel heat-resistant austenitic cast steel with an improved thermal fatigue resistance. International Journal of Metalcasting. 17(2), 1114-1127. DOI: 10.1007/s40962-022-00838-1.
[6] Drotlew, A., Garbiak, M. & Piekarski, B. (2012). Cast steels for creep-resistant parts used in heat-treatment plants. Archives of Foundry Engineering, 12(4), 31-38. DOI: 10.2478/v10266-012-0103-0.
[7] Lekakh, S. N., Buchely, M., Li, M., & Godlewski, L. (2023). Effect of Cr and Ni concentrations on resilience of cast Nb-alloyed heat resistant austenitic steels at extreme high temperatures. Materials Science and Engineering: A. 873, 145027. DOI: doi.org/10.1016/j.msea.2023.145027.
[8] Piekarski, B. & Drotlew A. (2019). Cast grates used in heat treatment furnaces. Archives of Foundry Engineering, 19(3), 49-54. DOI: 10.24425/afe.2019.127138.
[9] Nandwana, D., Bhupendra, N. K., Bhargava, T., Nandwana, K., & Jawale, G. (2010). Design, Finite Element analysis and optimization of HRC trays used in heat treatment process. Proceedings of the World Congress on Engineering WCE 2010, (II), (pp. 1149-1154).
[10] Ul-Hamid, A., Tawancy, H. M., Mohammed, A. R. I., & Abbas, N. M. (2006). Failure analysis of furnace tubes exposed to excessive temperature. Engineering Failure Analysis. 13(6), 1005-1021. DOI: 10.1016/j.engfailanal. 2005.04.003.
[11] Piekarski, B. (2010). Damage of heat-resistant castings in a carburizing furnace. Engineering Failure Analysis. 17(1), 143-149. DOI: 10.1016/j.engfailanal.2009.04.011.
[12] Reihani, A., Razavi, S. A., Abbasi, E., & Etemadi, A. R. (2013). Failure analysis of welded radiant tubes made of cast heat-resisting steel. Journal of failure Analysis and Prevention. 13(6), 658-665. DOI: 10.1007/s11668-013-9741-y.
[13] Bochnakowski, W., Szyller, Ł. & Osetek, M. (2019). Damage characterization of belt conveyor made of the 330Nb alloy after service in a carburizing atmosphere in a continuous heat treatment furnace. Engineering Failure Analysis. 103, 173-183. DOI: 10.1016/j.engfailanal.2019.04.058.
[14] González-Ciordia, B., Fernández, B., Artola, G., Muro, M., Sanz, Á., & López de Lacalle, L. N. (2019). Failure-analysis based redesign of furnace conveyor system components: a case study. Metals. 9(8), 816, 1-12. DOI: 10.3390/met9080816.
[15] Srikanth, S., Saravanan, P., Khalkho, B., & Banerjee, P. (2021). Failure analysis of inconel 601 radiant tubes in continuous annealing furnace of hot dip galvanizing line. Journal of Failure Analysis and Preven-tion, 21. 747-758. DOI: 10.1007/s11668-021-01148-0.
[16] Gutowski, P. (1989). Analysis of cracking causes in grates used in carburising furnaces. Szczecin: Diss., Politechnika Szczecińska. (in Polish).
[17] Schnaas, A., Grabke, H.J. (1978). High-Temperature Corrosion and Creep of Ni-Cr-Fe Alloys in Carburizing and Oxidizing Environments. Oxidation of Metals. 12(5), 387-404. https://doi.org/10.1007/BF00612086.
[18] Zatorski, Z. & Tuleja, J. (2017). Numerical modelling of micro-stresses in carbonised austenitic cast steel under rapid cooling conditions. Archives of Metallurgy and Materials. 62(2), 635-641. DOI: 10.1515/amm-2017-0093.
[19] Bajwoluk, A. & Gutowski, P. (2019). Stress and crack propagation in the surface layer of carburized stable austenitic alloys during cooling. Materials at High Temperatures. 36(1), 9-18. DOI: 10.1080/09603409.2018144 8528.
[20] Bajwoluk, A. & Gutowski, P. (2017). The effect of cooling agent on stress and deformation of charge-loaded cast pallets. Archives of Foundry Engineering. 17(4), 13-18. DOI: 10.1515/afe-2017-0123.
[21] Bajwoluk, A. & Gutowski, P. (2018). Design options to decrease the thermal stresses in cast accessories for heat and chemical treatment furnaces. Archives of Foundry Engineering. 18(4), 125-130. DOI:10.24425/afe.2018. 125181.
[22] Bajwoluk, A. & Gutowski, P. (2019). Thermal stresses in the accessories of heat treatment furnaces vs cooling kinetics. Archives of Foundry Engineering. 19(3), 88-93. DOI: 10.24425/afe.2019.127146.
[23] Bajwoluk, A. & Gutowski, P. (2021). Effect of thermal nodes reduction in wall connections of the charge-handling furnace grates on thermal stresses. Archives of Foundry Engineering. 21(3), 53-58. DOI: 10.24425/afe.2021.138665.
[24] Tuleja, J., Kędzierska, K. & Sowa, M. (2022). The use of the finite element method to locate the places of damage occurrence in elements of technological equipment in carburizing furnaces. Procedia Computer Science. 207, 3931-3937. DOI: 10.1016/j.procs.2022.09.455.
[25] Bajwoluk, A. & Gutowski, P. (2023). Analysis of thermal stresses synergy in surface layer of carburised creep-resistant casts during rapid cooling processes. Materials at High Temperatures. 40(1), 64-76. DOI: 10.1080/09603409.2022. 2162684.
[26] Zienkiewicz, O.C. (1971). Finite element method in engineering science. London: McGraw-Hill.
[27] Midas NFX 2017: Analysis Manual, 2017.
[28] Standard PN-EN 10295: 2004. Heat resistant steel castings.
[29] Church, B. C., Sanders, T. H., Speyer, R. F., & Cochran, J. K. (2007). Thermal expansion matching and oxidation resistance of Fe–Ni–Cr interconnect alloys. Material Science and Engineering A. 452-453. https://doi.org/10.1016/j.msea.2006.10.149.
[30] Guo, X., Liu, Z., Li, L., Cheng, J., Su, H., & Zhang, L. (2022). Revealing the long-term oxidation and carburization mechanism of 310S SS and Alloy 800H exposed to supercritical carbon dioxide. Materials Chararacterization. 183, 111603. DOI: 10.1016/j.matchar.2021.111603.
[31] Shaffer, P.T.B.(1964). Plenum Press Handbooks Of High-Temperature Materials, Springer Science + Business Media.
[32] Schutze, M. (1997). Protective oxide scales and their breakdown. Ed. by D. R. Holmes, Institute of Corrosion, John Wiley & Sons.
[33] Huntz, A.M. (1995). Stresses in NiO, Cr2O3, and A2O3, oxide, Mater Science and Engineering A. 201 (1-2), 211-228. https://doi.org/10.1007/BF02648633.
[34] Richard, C. S., Béranger, G., & Decomps, F. (1995). Study of Cr203 coatings Part I: Microstructures and modulus. Journal of Thermal Spray Technology. 4(4), 342-346. https://doi.org/10.1007/BF02648633.
[35] Pang, X., Gao, K., & Volinsky, A. A. (2007). Microstructure and mechanical properties of chromium oxide coatings. Journal of Materials Research. 22(12), 3531-3537.
[36] Ji, A. L., Wang, W., Song, G. H., Wang, Q. M., Sun, C., & Wen, L. S. (2004). Microstructures and mechanical properties of chromium oxide films by arc ion plating. Materials Letters. 58(14), 1993-1998. https://doi.org/10.1016/j.matlet. 2003.12.029.
[37] Barshilia, H.C. & Rajam, K.S. (2008). Growth and characterization of chromium oxide coatings prepared by pulsed-direct current reactive unbalanced magnetron sputtering. Applied Surface Science. 255(9), 2925-2931. https://doi.org/10.1016/j.apsusc.2008.08.057.
[38] Gaillac, R., Pullumbi, P., & Coudert, F. X. (2016). ELATE: an open-source online application for analysis and visualization of elastic tensors. Journal of Physics: Condensed Matter. 28(27), 275201.

Date

19.03.2024

Type

Article accepted

Identifier

DOI: 10.24425/afe.2024.149263
×