Details
Title
Abrasive Wear Resistance of Nodular Cast Iron After Selected Surface Heat and Thermochemical Treatment ProcessesJournal title
Archives of Foundry EngineeringYearbook
2024Volume
vol. 24Issue
No 3Affiliation
Baron, C. : Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland ; Stawarz, M. : Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland ; Studnicki, A. : Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland ; Jezierski, J. : Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland ; Wróbel, T. : Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland ; Dojka, R. : Odlewnia RAFAMET Sp. z o.o., ul. Staszica 1, 47-420 Kuźnia Raciborska, Poland ; Lenert, M. : Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland ; Lenert, M. : Odlewnia RAFAMET Sp. z o.o., ul. Staszica 1, 47-420 Kuźnia Raciborska, Poland ; Piasecki, K. : Silesian University of Technology, Department of Foundry Engineering, Towarowa 7, 44-100 Gliwice, Poland ; Piasecki, K. : Odlewnia RAFAMET Sp. z o.o., ul. Staszica 1, 47-420 Kuźnia Raciborska, PolandAuthors
Keywords
Surface hardening ; Nitriding ; Nitrocarburizing ; Nitrocarburizing with oxidation ; Abrasive wearDivisions of PAS
Nauki TechniczneCoverage
25-35Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Pan, C., Gu, Y., Chang, J. & Wang, C. (2023). Recent patents on friction and wear tester. Recent Patents on Engineering. 17(4), 86-102. DOI:10.2174/1872212117666220621103655.[2] Yang, Z., Ye, S., Wang, Z., Li, Z. & Li. W. (2023). Experimental and simulation study on braking noise characteristics and noise reduction strategies of the friction pair between the SiCp/A356 brake disc and the synthetic pad. Engineering Failure Analysis. 145, 1-20, 107017. https://doi.org/10.1016/j.engfailanal.2022.107017.
[3] Wang, K., Zhang, Z., Dandu, R.S.B. & Cai. W. (2023). Understanding tribocorrosion of aluminum at the crystal level. Acta Materialia. 245, 1-13, 118639. DOI:10.1016/j.actamat.2022.118639.
[4] Jakobsen, P.D., Langmaack, L., Dahl, F. & Breivik. T. (2013). Development of the soft ground abrasion tester (SGAT) to predict TBM tool wear, torque and thrust. Tunneling and Underground Space Technology. 38, 398-408. DOI:10.1016/j.tust.2013.07.021.
[5] Tiruvenkadam, N., Thyla, P.R. Senthil Kumar, M., Kader, N.A., Pradeep, V.K., Vishnu Kumar, R., Sasikumar, N. (2013). Development of multipurpose reciprocating wear tester under various environmental parameters. In International Conference on Energy Efficient Technologies for Sustainability, 10 – 12 April 2013 (pp. 213 – 216). Nagercoil, India. DOI:10.1109/ICEETS.2013.6533384.
[6] Guanzhang, H., Xiaojing, Y., Yilin, C. & Jie, D. (2011). Development of a system for measuring the variation of friction force on reciprocating wear tester. In Third International Conference on Measuring Technology and Mechatronics Automation, 6-7 January 2011 (Vol. 1, pp. 1045-1049). DOI:10.1109/ICMTMA.2011.262.
[7] Vasquez, H., Lozano, K., Soto, V. & Rocha, A. (2008). Design of a wear tester for nano-reinforced polymer composites. Measurement. 41(8), 870-877. DOI:10.1016/j.measurement.2007.12.003.
[8] Wei, R., Wilbur, P.J., Sampath, W.S., Williamson, D.L., Qu, Y. & Wang, L. (1990). Tribological studies of ion-implanted steel constituents using an oscillating pin-on-disk wear tester. Journal of Tribology. 112(1), 27-36. DOI:10.1115/1.2920227.
[9] Desale, G.R., Gandhi, B.K. & Jain, S.C. (2005). Improvement in the design of a pot tester to simulate erosion wear due to solid-liquid mixture. Wear. 259(1-6), 196-202. DOI:10.1016/j.wear.2005.02.068.
[10] Wang, X., Song, Y., Li, C., Zhang, Y. Ali, H.M., Sharma, S., Li, R. et al. (2023). Nanofluids application in machining: a comprehensive review. International Journal of Advanced Manufacturing Technology. 131(5-6), 3113-3164. DOI:10.1007/s00170-022-10767-2.
[11] De Stefano, M., Aliberti, S.M. & Ruggiero. A. (2022). (Bio) Tribocorrosion in dental implants: principles and techniques of investigation. Applied Sciences. 12(15), 1-16. DOI:10.3390/app12157421.
[12] Vilhena, L., Ferreira, F., Oliveira, J.C. & Ramalho. A. (2022). Rapid and easy assessment of friction and load-bearing capacity in thin coatings. Electronics. 11(3), 1-19, 296. DOI:10.3390/electronics11030296.
[13] Valigi, M.C., Logozzo, S. & Affatato, S. (2017). New challenges in tribology: wear assessment using 3d optical scanners. Materials. 10(5), 1-13, 548. DOI:10.3390/ma10050548.
[14] Dwulat, R., Janerka, K. & Grzesiak, K. (2021). The influence of final inoculation on the metallurgical quality of nodular cast iron. Archives of Foundry Engineering. 21(4), 5-14. DOI:10.24425/afe.2021.138673.
[15] Janerka, K., Kostrzewski, Ł., Stawarz, M. & Jezierski. J. (2020). The importance of sic in the process of melting ductile iron with a variable content of charge materials. Materials. 13(5), 1-10, 1231. DOI:10.3390/ma13051231.
[16] Gumienny, G., Kurowska, B. & Fabian. P. (2020). Compacted graphite iron with the addition of Tin. Archives of Foundry Engineering. 20(3), 15-20. DOI:10.24425/afe.2020.133323.
[17] Gunalan, M. & Anandeswaran, V.A. (2021). A holistic approach of developing new high strength cast iron for weight optimization. SAE Techical Paper. DOI:10.4271/2021-26-0244.
[18] Bendikiene, R., Bahdanovich, A., Cesnavicius, R., Ciuplys, A., Grigas, V., Jutas, A., Marmysh, D., Nasan, A., Shemet, L., Sherbakov, S. & Sosnovskiy, L. (2020). Tribo-fatigue behavior of austempered ductile iron monica as new structural material for rail-wheel system. Medziagotyra. 26(4), 432-437. DOI:10.5755/j01.ms.26.4.25384.
[19] [20] Zhu, Y., Keoleian, G.A. & Cooper. D.R. (2023). A parametric life cycle assessment model for ductile cast iron components. Resources, Conservation and Recycling. 189, 1-9, 106729. DOI:10.1016/j.resconrec.2022.106729.
[20] Molian, P.A. & Baldwin, M. (1987). Effects of single-pass laser heat treatment on erosion behavior of cast irons. Wear. 118(3), 319-327. DOI:10.1016/0043-1648(87)90075-5.
[21] Molian, P.A. & Baldwin. M. (1988). Wear behavior of laser surface-hardened gray and ductile cast irons. Part 2 erosive wear. Journal of Tribology. 110(3), 462-466. DOI:10.1115/1.3261651.
[22] Wróbel, T., Studnicki, A., Stawarz, M., Baron, Cz., Jezierski, J., Bartocha, D., Dojka, R., Opiela, J. & Lisiecki, A. (2024). Improving the abrasion resistance of nodular cast iron castings by remelting their surfaces by laser beam. Materials. 17(9), 1-17, 2095. https://doi.org/10.3390/ma17092095.