Details
Title
Comparison of the Mechanical Properties of Ductile Cast Iron Intended for Gas Gate Valves with Nickel Cast Iron with an Austenitic MatrixJournal title
Archives of Foundry EngineeringYearbook
2024Volume
vol. 24Issue
No 3Affiliation
Rączka, A. : Fabryka Armatur JAFAR S.A. Kadyiego 12 Street 38-200 Jasło, Poland ; Szczęsny, A. : AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-065 Kraków, Poland ; Kopyciński, D. : AGH University of Science and Technology, Faculty of Foundry Engineering, Reymonta 23, 30-065 Kraków, PolandAuthors
Keywords
Nodular cast iron ; Austenitic matrix ; Nickel cast iron ; Impact strengthDivisions of PAS
Nauki TechniczneCoverage
36-42Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
[1] Kanellopoulos, K., Busch, S., De Felice, M., Giaccaria, S. and Costescu, A. (2022). Blending hydrogen from electrolysis into the European gas grid. EUR 30951 EN, Publications Office of the European Union, Luxembourg, 2022, ISBN 978-92-76-46346-7, DOI:10.2760/908387, JRC 126763.[2] ToGetAir. (2024). Hydrogen Needs Strong Support. Retrieved December, 18, 2023 from https://raport.togetair.eu/ogien/energia-przyszlosci/wodor-potrzebuje-mocnego-wsparcia. (in Polish).
[3] Jaworski, J., Kukulska-Zając, E. & Kułaga, P. (2019). Selected issue regarding the impact of addition of hydrogen to natural gas on the elements of the gas system. Nafta-Gaz. 10, 625-632. DOI: 10.18668/NG.2019.10.04. (in Polish).
[4] Bąkowski, K, (2007). Gas grids and installations – guide. Warszawa: WNT. (in Polish).
[5] EN 13774:2013 Valves for gas distribution system with maximum operating pressure less than or equal to 16 bar – Performance requirements.
[6] Regulation of the Minister of Economy of April 26, 2013 on the technical conditions to be met by gas grids and their location. (Dz.U z 2013 r., Nr 0, poz. 640). (in Polish).
[7] Information Publication 11/I, Safe use of hydrogen as fuel in commercial industrial applications, Polish Ship Register, Gdańsk 2021, p 36 (in Polish)
[8] Sahiluoma, P., Yagodzinskyy, Y., Forsström, A., Hänninen, H. & Bossuyt, S. (2021). Hydrogen embrittlement of nodular cast iron. Materials and Corrosion. 72(1-2), 245-254. DOI: 10.1002/maco.202011682.
[9] Yoshimoto, T., Matsuo, T. & Ikeda, T. (2019). The effect of graphite size on hydrogen absorption and tensile properties of ferritic ductile cast iron. Procedia Structural Integrity. 14, 18-25. https://doi.org/10.1016/j.prostr.2019.05.004.
[10] Elboujdaini E. (2011). Hydrogen-Induced Cracking and Sulfide Stress Cracking. Uhlig’s Corrosion Handbook. R. Winston Revie (red.). Wiley, 183-194.
[11] Gangloff, R.P. (2012). Gaseous hydrogen embrittlement of materials in energy technologies. Woodhead Publishing.
[12] Jiaxing Liu, Mingjiu Zhao, Lijian Rong (2023). Overview of hydrogen-resistant alloys for high-pressure hydrogen environment: on the hydrogen energy structural materials. Clean Energy. 7(1), 99-115. https://doi.org/10.1093/ce/zkad009.
[13] Dwivedi, S.K. & Vishwakarma. M. (2018). Hydrogen embrittlement in different materials: A review. International Journal of Hydrogen Energy. 43(46), 21603-21616. https://doi.org/10.1016/j.ijhydene.2018.09.201.
[14] Dziadur, W., Lisak, J., & Tabor A. (2004). Corrosion testing of high-nickel ductile cast iron. Journal of Applied Materials Engineering. 6, 28-32. (in Polish).
[15] Guzik, E., Kopyciński, D. (2004). Structure and impact strength of austenitic ductile iron. Archives of Foundry. 4(12), 115-120. ISSN 1642-5308. (in Polish).
[16] Tabor, A., Putyra, P., Zarębski, P. & Maguda, T. (2009). Austenitic ductile iron for low temperature applications. Archives of Foundry Engineering. 9(1), 163-168. ISSN (1897-3310).