Details
Title
Transmission Line Model Measurements of Metal-Semiconductor ContactsJournal title
Archives of Foundry EngineeringYearbook
2025Volume
Accepted articlesAuthors
Affiliation
Musztyfaga-Staszuk, M.M. : Silesian University of Technology, Welding Department, Poland ; Panek, P. : Institute of Metallurgy and Materials Science PAS, Poland ; Czupryński, A. : Silesian University of Technology, Welding Department, Poland ; Mele, C. : Dipartimento di Ingegneria dell'Innovazione, Università del Salento, ItalyKeywords
Transmission line model (TLM) ; Semiconductor structure ; Front contact/metallizationDivisions of PAS
Nauki TechnicznePublisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Green, M.A. (1986). Solar cells: operating principles, technology and system applications. Englewood Cliffs, N.J.: Prentice-Hall Pub.
- Serreze, H.B. (1978). Optimizing solar cell performance by simultaneous consideration of grid pattern design and interconnect configurations. conference record. In Proceedings of 13th IEEE Photovoltaic Specialists Conference, Washington, D.C.
- Adamczewska, J. (1980). Technological processes in semiconductor electronics. WNT. (in Polish).
- Musztyfaga-Staszuk, M. (2022). Application of the transmission line method (TLM) to measure the resistivity of contacts, Gliwice: Silesian University of Technology Pub.
- Alemán, M., Streek. A., Regenfuβ, P., Mette, A., Ebert, R., Exner, H.; Glunz, S.W., Willeke G. (2006). Laser micro-sintering as a new metallization technique for silicon solar cells. In proceedings of the 21st European Photovoltaic Solar Energy Conference, 4 - 8 September 2006 (pp. 1-4). Dresden, Germany.
- Dross, F., Van, K.E.; Allebe, C., van der Heide, A., Szlufcik, J. Agostinelli G., Choulat P., Dekkers H.F.W., Beaucarne G. (2006). Impact of rear-surface passivation on MWT performances. Photovoltaic Energy Conversion. In proceedings of Conference Record of the IEEE 4th World Conference, 7 - 12 May 2006 (pp. 1291-1294). , Waikoloa, Hawaii.
- Gautero, L., Hofmann, M., Rentsch, J., Lemke, A.; Mack, S., Seiffe, J., Nekarda, J., Biro, D., Wolf, A.; Bitnar, B., Sallese, J.M., Preu R. (2009). All-screen-printed 120-µm-thin large-area silicon solar cells applying dielectric rear passivation and laser-fired contacts reaching 18% efficiency. In proceedings of Photovoltaic Specialists Conference (PVSC), 34th IEEE, 7-12 June 2009 (pp. 001888-001893). Philadelphia, Pennsylvania.
- Ghozati, S.B., Ebong, A.U., Honsberg, C. B. & Wenham, S.R. (1998). Improved fill-factor for the double-sided buried-contact bifacial silicon solar cells. Solar Energy Materials and Solar Cells. 51(2), 121-128. https://doi.org/10.1016/S0927-0248(97)00210-9.
- Glunz, S.W. (2007). High-efficiency crystalline silicon solar cells. Advances in Opto-Electrinics. 1, 097370. https://doi.org/10.1155/2007/97370.
- Harder, N.P., Hermann, S., Merkle, A., Neubert, T., Brendemühl, T., Engelhart, P., Meyer, R. & Brendel, R. (2009). Laser-processed high-efficiency silicon RISE-EWT solar cells and characterization. Physica Status, Solid, C. 6(3), 736-743. https://doi.org/10.1002/pssc.200880720.
- Tepner, S. & Lorenz, A. (2023). Printing technologies for silicon solar cell metallization: Acomprehensive review. Progress in Photovoltaics: Research and Applications. 31(6), 557-590. https://doi.org/10.1002/pip.3674.
- Musztyfaga, M. (2011). Laser micromachining of silicon elements photovoltaic cells 2011. Silesian University of Technology, Gliwice.
- Hunde, B.R. & Woldeyohannes A.D. (2023). 3D printing and solar cell fabrication methods: A review of challenges, opportunities, and future prospects. Results in Optics. 11, 100385, 1-11. https://doi.org/10.1016/j.rio.2023.100385.
- Lin, X., Kavalakkatt, J., Lux-Steiner, M.C. Ennaoui, A. (2015). Inkjet-printed Cu2ZnSn (S, Se) 4 solar cells. Advanced Science. 2(6), 1500028.
- Mathies, F., Eggers, H., Richards, B.S., Hernandez-Sosa, G., Lemmer, U. & Paetzold, U.W. (2018). Inkjet-printed triple cation perovskite solar cells. ACS Applied Energy Materials. 1(5), 1834-1839. https://doi.org/10.1021/acsaem.8b00222.
- Li, Z., Li, P., Chen, G., Cheng, Y., Pi, X., Yu, X. & Song, Y. (2020). Ink engineering of inkjet printing perovskite. ACS Appl. Mater. Interfaces. 12(35), 39082-39091. https://doi.org/10.1021/acsami.0c09485.
- Nagarajan, B., Raval M., C. & Saravanan, S. (2019). Review on Metallization in Crystalline Silicon Solar Cells. In Solar Cells. (1st). London: The Intechopen Ltd Pub.
- Wenham, S.R., Green, MA. (1986). Patent no 4,626,613. US.
- Romain, C., Mohamed, A. & Mustapha, L. (2013). Improvement of back surface metallization in a silicon interdigitated back contacts solar cell. Energy Procedia. 38, 684-690. https://doi.org/10.1016/j.egypro.2013.07.333.
- Ehling, C., Schubert, M. B., Merz, R., Müller, J., Hlusiak, M., Rostan, P. J., & Werner, J. H. (2009). 4% absolute efficiency gain by novel back contact. Solar Energy Materials & Solar Cells. 93(6-7), 707-709. https://doi.org/10.1016/j.solmat.2008.09.036.
- Erath, D., Filipović, A., Retzlaff, M., Goetz, A. K., Clement, F., Biro, D., & Preu, R. (2010). Advanced screen printing technique for high definition front side metallization of crystalline silicon solar cells. Solar Energy Materials & Solar Cells. 94(1), 57-61. https://doi.org/10.1016/j.solmat.2009.05.018.
- Kopecek, R., Buchholz, F., Mihailetchi, V.D., Libal, J., Lossen, J., Chen, N., Chu, H., Peter, C., Timofte, T., Halm, A. et al. (2023). Interdigitated back contact technology as final evolution for industrial crystallinesingle-junction silicon solar cell. 3(1), 1-14. https://doi.org/10.3390/solar3010001.
- Glunz, S. W., Preu, R., Schaefer, S., Schneiderlochner, E., Pfleging, W., Ludemann, R., & Willeke, G. (2000). New simplified methods for patterning the rear contact of RP-PERC high-efficiency solar cells. In proceedings of 28th IEEE PVSC, Anchorage, Alaska; 15-22 September 2000 (pp. 168-171).
- ENF Solar. (2024). Retrieved December, 2022, from https://www.enfsolar.com/directory/material/metallization_paste?tech=408
- Retrieved November, 2022, from http://taiyangnews.info/TaiyangNews_Market_Survey_Metallization_Pastes_2019_20_download_v1.pdf.
- Musztyfaga-Staszuk, M. (2019). New copper-based composites for silicon photovoltaic cells. Gliwice: Silesian University of Technology Pub.
- Goetzberger, A., Scarlett, R. M., & Shockley, W. (1964). Research and investigation of inverse epitaxial UHF power transistors. Air Force Avionics Lab., Wright-Patterson Air Force Base, OH, USA, Rep. AD0605376.
- Defense Technical Information Center. (2025). Retrieved November 2022, from https://apps.dtic.mil/sti/citations/AD0605376
- Berger, H.H. (1969). Contact resistance on diffused resistors. In IEEE Solid-State Circuits Conference. Digest of Technical Papers (pp.160–161).
- Berger H. H. (1972). Models for contacts to planar devices. Solid State Electron. 15(2), 145-158. https://doi.org/10.1016/0038-1101(72)90048-2.
- Denhoff, M.W., Droleta, N. (2009). The effect of the front contact sheet resistance on solar cell performance. Solar Energy Materials and Solar Cells. 93(9), 1499-1506. https://doi.org/10.1016/j.solmat.2009.03.028.
- Schroder D.K. (2006). Semiconductor material and device characterization (3rd ed.). Arizona State University Tempe, AZ. In IEEE Press and John Wiley & Sons Inc.
- Pysch, D.; Mette, A.; Filipovic, A.;. Glunz, S.W.A. (2009). Comprehensive analysis of advanced solar cell contacts consisting of printed fine-line seed layers thickened by silver plating. Progress in photovoltaics: Research and Applications. 17, 101-114. https://doi.org/10.1002/pip.855.