Details

Title

Transmission Line Model Measurements of Metal-Semiconductor Contacts

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

Accepted articles

Authors

Affiliation

Musztyfaga-Staszuk, M.M. : Silesian University of Technology, Welding Department, Poland ; Panek, P. : Institute of Metallurgy and Materials Science PAS, Poland ; Czupryński, A. : Silesian University of Technology, Welding Department, Poland ; Mele, C. : Dipartimento di Ingegneria dell'Innovazione, Università del Salento, Italy

Keywords

Transmission line model (TLM) ; Semiconductor structure ; Front contact/metallization

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. Green, M.A. (1986). Solar cells: operating principles, technology and system applications. Englewood Cliffs, N.J.: Prentice-Hall Pub.
  2. Serreze, H.B. (1978). Optimizing solar cell performance by simultaneous consideration of grid pattern design and interconnect configurations. conference record. In Proceedings of 13th IEEE Photovoltaic Specialists Conference, Washington, D.C.
  3. Adamczewska, J. (1980). Technological processes in semiconductor electronics. WNT. (in Polish).
  4. Musztyfaga-Staszuk, M. (2022). Application of the transmission line method (TLM) to measure the resistivity of contacts, Gliwice: Silesian University of Technology Pub.
  5. Alemán, M., Streek. A., Regenfuβ, P., Mette, A., Ebert, R., Exner, H.; Glunz, S.W., Willeke G. (2006). Laser micro-sintering as a new metallization technique for silicon solar cells. In proceedings of the 21st European Photovoltaic Solar Energy Conference, 4 - 8 September 2006 (pp. 1-4). Dresden, Germany.
  6. Dross, F., Van, K.E.; Allebe, C., van der Heide, A., Szlufcik, J. Agostinelli G., Choulat P., Dekkers H.F.W., Beaucarne G. (2006). Impact of rear-surface passivation on MWT performances. Photovoltaic Energy Conversion. In proceedings of Conference Record of the IEEE 4th World Conference, 7 - 12 May 2006 (pp. 1291-1294). , Waikoloa, Hawaii.
  7. Gautero, L., Hofmann, M., Rentsch, J., Lemke, A.; Mack, S., Seiffe, J., Nekarda, J., Biro, D., Wolf, A.; Bitnar, B., Sallese, J.M., Preu R. (2009). All-screen-printed 120-µm-thin large-area silicon solar cells applying dielectric rear passivation and laser-fired contacts reaching 18% efficiency. In proceedings of Photovoltaic Specialists Conference (PVSC), 34th IEEE, 7-12 June 2009 (pp. 001888-001893). Philadelphia, Pennsylvania.
  8. Ghozati, S.B., Ebong, A.U., Honsberg, C. B. & Wenham, S.R. (1998). Improved fill-factor for the double-sided buried-contact bifacial silicon solar cells. Solar Energy Materials and Solar Cells. 51(2), 121-128. https://doi.org/10.1016/S0927-0248(97)00210-9.
  9. Glunz, S.W. (2007). High-efficiency crystalline silicon solar cells. Advances in Opto-Electrinics. 1, 097370. https://doi.org/10.1155/2007/97370.
  10. Harder, N.P., Hermann, S., Merkle, A., Neubert, T., Brendemühl, T., Engelhart, P., Meyer, R. & Brendel, R. (2009). Laser-processed high-efficiency silicon RISE-EWT solar cells and characterization. Physica Status, Solid, C. 6(3), 736-743. https://doi.org/10.1002/pssc.200880720.
  11. Tepner, S. & Lorenz, A. (2023). Printing technologies for silicon solar cell metallization: Acomprehensive review. Progress in Photovoltaics: Research and Applications. 31(6), 557-590. https://doi.org/10.1002/pip.3674.
  12. Musztyfaga, M. (2011). Laser micromachining of silicon elements photovoltaic cells 2011. Silesian University of Technology, Gliwice.
  13. Hunde, B.R. & Woldeyohannes A.D. (2023). 3D printing and solar cell fabrication methods: A review of challenges, opportunities, and future prospects. Results in Optics. 11, 100385, 1-11. https://doi.org/10.1016/j.rio.2023.100385.
  14. Lin, X., Kavalakkatt, J., Lux-Steiner, M.C. Ennaoui, A. (2015). Inkjet-printed Cu2ZnSn (S, Se) 4 solar cells. Advanced Science. 2(6), 1500028.
  15. Mathies, F., Eggers, H., Richards, B.S., Hernandez-Sosa, G., Lemmer, U. & Paetzold, U.W. (2018). Inkjet-printed triple cation perovskite solar cells. ACS Applied Energy Materials. 1(5), 1834-1839. https://doi.org/10.1021/acsaem.8b00222.
  16. Li, Z., Li, P., Chen, G., Cheng, Y., Pi, X., Yu, X. & Song, Y. (2020). Ink engineering of inkjet printing perovskite. ACS Appl. Mater. Interfaces. 12(35), 39082-39091. https://doi.org/10.1021/acsami.0c09485.
  17. Nagarajan, B., Raval M., C. & Saravanan, S. (2019). Review on Metallization in Crystalline Silicon Solar Cells. In Solar Cells. (1st). London: The Intechopen Ltd Pub.
  18. Wenham, S.R., Green, MA. (1986). Patent no 4,626,613. US.
  19. Romain, C., Mohamed, A. & Mustapha, L. (2013). Improvement of back surface metallization in a silicon interdigitated back contacts solar cell. Energy Procedia. 38, 684-690. https://doi.org/10.1016/j.egypro.2013.07.333.
  20. Ehling, C., Schubert, M. B., Merz, R., Müller, J., Hlusiak, M., Rostan, P. J., & Werner, J. H. (2009). 4% absolute efficiency gain by novel back contact. Solar Energy Materials & Solar Cells. 93(6-7), 707-709. https://doi.org/10.1016/j.solmat.2008.09.036.
  21. Erath, D., Filipović, A., Retzlaff, M., Goetz, A. K., Clement, F., Biro, D., & Preu, R. (2010). Advanced screen printing technique for high definition front side metallization of crystalline silicon solar cells. Solar Energy Materials & Solar Cells. 94(1), 57-61. https://doi.org/10.1016/j.solmat.2009.05.018.
  22. Kopecek, R., Buchholz, F., Mihailetchi, V.D., Libal, J., Lossen, J., Chen, N., Chu, H., Peter, C., Timofte, T., Halm, A. et al. (2023). Interdigitated back contact technology as final evolution for industrial crystallinesingle-junction silicon solar cell. 3(1), 1-14. https://doi.org/10.3390/solar3010001.
  23. Glunz, S. W., Preu, R., Schaefer, S., Schneiderlochner, E., Pfleging, W., Ludemann, R., & Willeke, G. (2000). New simplified methods for patterning the rear contact of RP-PERC high-efficiency solar cells. In proceedings of 28th IEEE PVSC, Anchorage, Alaska; 15-22 September 2000 (pp. 168-171).
  24. ENF Solar. (2024). Retrieved December, 2022, from https://www.enfsolar.com/directory/material/metallization_paste?tech=408
  25. Retrieved November, 2022, from http://taiyangnews.info/TaiyangNews_Market_Survey_Metallization_Pastes_2019_20_download_v1.pdf.
  26. Musztyfaga-Staszuk, M. (2019). New copper-based composites for silicon photovoltaic cells. Gliwice: Silesian University of Technology Pub.
  27. Goetzberger, A., Scarlett, R. M., & Shockley, W. (1964). Research and investigation of inverse epitaxial UHF power transistors. Air Force Avionics Lab., Wright-Patterson Air Force Base, OH, USA, Rep. AD0605376.
  28. Defense Technical Information Center. (2025). Retrieved November 2022, from https://apps.dtic.mil/sti/citations/AD0605376
  29. Berger, H.H. (1969). Contact resistance on diffused resistors. In IEEE Solid-State Circuits Conference. Digest of Technical Papers (pp.160–161).
  30. Berger H. H. (1972). Models for contacts to planar devices. Solid State Electron. 15(2), 145-158. https://doi.org/10.1016/0038-1101(72)90048-2.
  31. Denhoff, M.W., Droleta, N. (2009). The effect of the front contact sheet resistance on solar cell performance. Solar Energy Materials and Solar Cells. 93(9), 1499-1506. https://doi.org/10.1016/j.solmat.2009.03.028.
  32. Schroder D.K. (2006). Semiconductor material and device characterization (3rd ed.). Arizona State University Tempe, AZ. In IEEE Press and John Wiley & Sons Inc.
  33. Pysch, D.; Mette, A.; Filipovic, A.;. Glunz, S.W.A. (2009). Comprehensive analysis of advanced solar cell contacts consisting of printed fine-line seed layers thickened by silver plating. Progress in photovoltaics: Research and Applications. 17, 101-114. https://doi.org/10.1002/pip.855.

Date

18.02.20025

Type

Article

Identifier

DOI: 10.24425/afe.2025.153772
×