Szczegóły
Tytuł artykułu
Assessment of Thermal Conditions by Slow Solidification in Al Alloys and the FacilityTytuł czasopisma
Archives of Foundry EngineeringRocznik
2025Wolumin
vol. 25Numer
No 2Autorzy
Afiliacje
Mikolajczak, P. : Poznan University of Technology, PolandSłowa kluczowe
Aluminum alloys ; Slow solidification ; Temperature field ; Experimental facility and procedure ; Solid fraction curveWydział PAN
Nauki TechniczneZakres
5-20Wydawca
The Katowice Branch of the Polish Academy of SciencesBibliografia
- Shwe, W.H.A., Kay, T.L. & Waing, K.K.O. (2008). The effect of ageing treatment of aluminum alloys for fuselage structure-light aircraft. World Academy of Science, Engineering and Technology. International Journal of Materials and Metallurgical Engineering. 2(10), 46, 696-699.
- Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J. & de Smet, P. (2000). Recent development in aluminum alloys for the automotive industry. Materials Science and Engineering. A 280, 37-49. https://doi.org/10.1016/S0921-5093(99)00653-X.
- The Aluminum Association, Inc. (1998). Aluminum alloy selection and applications. A monograph of Aluminum Association Incorporation, Washington, D C.
- Cubberly, W.H. (1979). Properties and selection: non-ferrous alloys and pure metals. Metals Handbook (Metals Park, OH: American Society for Metals).
- Smith, W.F. (1993). Alluminum alloys. In B.J. Clark and Jack Maisel (Eds.), Structure and properties of engineering alloys (pp. 176-242). United States of America: McGraw-Hill Series.
- Mondolfo, L.F. (1976). Aluminium Alloys: Structure and Properties. London, UK: Butterworths & Co.
- Sarafoglou, P., I., Aristeidakis, J.S., Tzini, M-I. T. & Haidemenopoulos, G.N. (2016). Metallographic Index‐Based quantification of the homogenization state in extrudable aluminum alloys. Metals. 6(5), 121. doi: 10.3390/met6050121.
- Stefanescu, D. (1988). The New Metals Hand Book: Casting, ASM International.
- Eskin, D.G. & Katgerman, L. (2009). Solidification phenomena related to direct chill casting of aluminium alloys: fundamental studies and future challenges. Materials Technology: Advanced Performance Materials. 24(3), 152-156. DOI: 1179/106678509X12489478523537.
- Zhang, H., Nagaumi H. & Cui, J.Z. (2012). Effects of low frequency electromagnetic field of multi-physical fields during DC casting of 7xxx aluminum alloys. Advanced Science Letters. 13(1), 306-311(6). https://doi.org/10.1166/asl.2012.3762.
- Bojarevičs, A., Kaldre, I., Milgrāvis, M., Beinerts, T. (2017). Direct chill casting of aluminium alloys under electromagnetic. interaction. In VIII International Scientific Colloquium "Modelling for Materials Processing", 21-22 September 2017 (pp. 259-262). Riga. DOI: 10.22364/mmp2017.42.
- Zaïdat, K., Mangelinck-Noël, N., Moreau, R. (2007). Control of melt convection by a travelling magnetic field during the directional solidification of Al–Ni alloys. Comptes Rendus Mecanique. 335, 330-335. DOI: 10.1016/j.crme.2007.05.010.
- Patarić, A., Mihailović, M., Marković, M., Sokić, M., Radovanović, A. & Jordović, B. (2021). Microstructure as an essential aspect of EN AW 7075 aluminum alloy quality influenced by electromagnetic field during continuous casting process. Hemijska industrija. 75(1), 31-37. https://doi.org/10.2298/HEMIND201214006P.
- Kaldre, I., Milgravis, M., Bojarevics, A. & Beinerts, T. (2021). Electromagnetic processing during directional solidification of particle-strengthened aluminum alloys for additive manufacturing. Materials Proceedings. 3(1), 19, 1-4. https://doi.org/10.3390/IEC2M-09255.
- Patarić, A., Mihailovic, M. & Gulisija, Z. (2012). Quantitative metallographic assessment of the electromagnetic casting influence on the microstructure of 7075 Al alloy. Journal of Materials Science. 47, 793-796. DOI 10.1007/s10853-011-5855-3.
- Wang, X.J., Zhao, Z.H., Zuo, Y.B., Zhu, Q.F., Qu, F. & Cui, J.Z. (2009). Effects of low frequency electromagnetic field on solidification of 7050 aluminium alloy during hot top casting. Materials Science and Technology. 25(10), 1207-1210. https://doi.org/10.1179/174328408X382172.
- Sree Manu, K.M., Barekar, N.S., Lazaro-Nebreda J., Patel, J.B. & Fan, Z. (2021). In-situ microstructural control of A6082 alloy to modify second phase particles by melt conditioned direct chill (MC-DC) casting process – A novel approach. Journal of Materials Processing Technology. 295, 117170, 1-14. https://doi.org/10.1016/j.jmatprotec.2021.117170.
- Zhang, Y., Patel, J.B., Lazaro-Nebreda, J. & Fan, Z. (2018). Improved defect control and mechanical property variation in high-pressure die casting of A380 alloy by high shear melt conditioning. The Journal of The Minerals, Metals & Materials Society. 70, 2726-2730. https://doi.org/10.1007/s11837-018-3005-y.
- Brollo, G.L., Proni, C.T.W. & Zoqui, E.J. (2018). Thixoforming of an Fe-Rich Al-Si-Cu Alloy—thermodynamic characterization, microstructural evolution, and rheological behavior. 8(5), 332, 1-24. https://doi.org/10.3390/met8050332.
- Haga, T. & Suziki, S. (2001). Casting of aluminum alloy ingots for thixoforming using a cooling slope. Journal of materials processing technology. 118(1-3), 169-172. https://doi.org/10.1016/S0924-0136(01)00888-3.
- Eslami, M., Payandeh, M., Deflorian, F., Jarfors, A.E.W. & Zanella, C. (2018). Effect of segregation and surface condition on corrosion of rheo-HPDC Al–Si alloys. Metals. 8(4), 209, 1-18. https://doi.org/10.3390/met8040209.
- Mohammed, M.N., Omar, M.Z., Al-Zubaidi, S., Alhawari, K.S. & Abdelgnei, M.A. (2018). Microstructure and mechanical properties of thixowelded AISI D2 tool steel. Metals. 8(5), 316, 1-16. https://doi.org/10.3390/met8050316.
- Wang, H., Davidson, C.J. & St. John, D.H. (2004). Semisolid microstructural evolution of AlSi7Mg during partial remelting. Materials Science and Engineering: A. 368(1-2), 159-167. https://doi.org/10.1016/j.msea.2003.10.305.
- Mikolajczak, P. & Ratke, L. (2013). Effect of stirring induced by rotating magnetic field on β-Al5FeSi intermetallic phases during directional solidification in AlSi alloys. International Journal of Cast Metals Research. 26(6), 339-353. https://doi.org/10.1179/1743133613Y.0000000069.
- Mikolajczak, P. & Ratke, L. (2011). Intermetallic phases and microstructure in AlSi alloys influenced by fluid flow. The Minerals, Metals & Materials Society (TMS). 10, 9781118062173. https://doi.org/10.1002/9781118062173.ch104.
- Mikolajczak, P. (2017). Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. 7(3), 89, 1-16. https://doi.org/10.3390/met7030089.
- Mikolajczak, P. (2021). Effect of rotating magnetic field on microstructure in AlCuSi alloys. Metals. 11(11), 1804, 1-24. https://doi.org/10.3390/met11111804.
- Mikolajczak, P. (2023). Distribution and morphology of α-Al, Si and Fe-Rich phases in Al–Si–Fe alloys under an electromagnetic field. Materials. 16(9), 3304. https://doi.org/10.3390/ma16093304.
- Mikolajczak, P. (2023). Morphology and distribution of α-Al and Mn-rich phases in Al-Si-Mn alloys under an electromagnetic stirring. Archives of Foundry Engineering. 23(3), 74-87. DOI: 24425/afe.2023.146665.
- Mikolajczak, P. (2023). Flow effect on Si crystals and Mn-phases in hypereutectic and eutectic Al-Si-Mn alloys. Archives of Foundry Engineering. 23(4), 72-86. DOI: 24425/afe.2023.146681.
- Jie, J.C., Zou, Q.C., Wang, H.W., Sun, J.L., Lu, Y.P., Wang, T.M. & Li, T.J. (2014). Separation and purification of Si from solidification of hypereutectic Al-Si melt under rotating magnetic field. Journal of Crystal Growth. 399, 43-48. http://dx.doi.org/10.1016/j.jcrysgro.2014.04.003.
- Wenzhou, Y., Wenhui, M., Guoqiang, L., Haiyang, X., Li, S. & Dai, Y. (2014). Effect of electromagnetic stirring on the enrichment of primary silicon from Al-Si melt. Journal of Crystal Growth. 405, 23-28. http://dx.doi.org/10.1016/j.jcrysgro.2014.07.035.
- Ma, X., Lei, Y., Yoshikawa, T., Zhao, B. & Morita, K. (2015). Effect of solidification conditions on the silicon growth and refining using Si-Sn melt. Journal of Crystal Growth. 430, 98-102. http://dx.doi.org/10.1016/j.jcrysgro.2015.08.001.
- Zhu, K., Hu, J., Ma, W., Wei, K., Lv, T. & Dai, Y.(2019). Effect of solidification parameters and magnetic field on separation of primary silicon from hypereutectic Ti-85 wt.% Si melt. Journal of Crystal Growth. 522, 78-85. https://doi.org/10.1016/j.jcrysgro.2019.05.012.
- Lv, G., Bao, Y., Zhang, Y., He, Y., Ma, W. & Leu, Y. (2018). Effects of electromagnetic directional solidification conditions on the separation of primary silicon from Al-Si alloy with high Si content. Materials Science in Semiconductor Processing. 81, 139-148. https://doi.org/10.1016/j.mssp.2018.03.006.
- Yoshikawa, T. & Morita, K. (2005). Refining of Si by the solidification of Si-Al melt with electromagnetic force. ISIJ International. 45(7), 967-971. https://doi.org/10.2355/isijinternational.45.967.
- Huang, F., Zhao, L., Liu, L., Hu, Z., Chen, R. & Dong, Z. (2019). Separation and purification of Si from Sn-30Si alloy by electromagnetic semi-continuous directional solidification. Materials Science in Semiconductor Processing. 99, 54-61. https://doi.org/10.1016/j.mssp.2019.04.015.
- He, Y., Yang, X., Duan, L., Li, S., Chen, Z., Ma, W., Lv, G. & Xing, A. (2021). Silicon separation and purification process from hypereutectic aluminum-silicon for organosilicon use. Materials Science in Semiconductor Processing. 121, 105333, 1-11, 1-11. https://doi.org/10.1016/j.mssp.2020.105333.
- Jiang, W., Yu, W., Li, J., You, Z., Li, C. & Lv, X. (2018). Segregation and morphological evolution of Si phases during electromagnetic directional solidification of hypereutectic Al-Si alloys. Materials. 12(1), 10, 1-14. DOI: 10.3390/ma12010010.
- Xue, H., Lv, G., Ma, W., Chen, D. & Yu, J. (2015). Separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields. Metallurgical and Materials Transactions A. 46, 2922-2932. DOI: 10.1007/s11661-015-2889-1.
- Sun, Jl., Zou, Qc., Jie, Jc. & Li, T. (2016). Separation of primary Si and impurity boron removal from Al-30%Si-10%Sn melt under a traveling magnetic field. China Foundry. 13(4), 284-288. https://doi.org/10.1007/s41230-016-6036-4.
- Zou, Q., Tian, H., Zhang, Z., Sun, C., Jie, J., Han, N. & An, X. (2020). Controlling segregation behaviour of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring. Metals. 10(9), 1129, 1-13. https://doi.org/10.3390/met10091129.
- Zou, Q., Han, N., Zhang, Z., Jie, J., Xu, F. & An, X. (2020). Enhancing segregation behaviour of impurity by electromagnetic stirring in the solidification process of Al-30Si alloy. Metals. 10(1), 155, 1-11. https://doi.org/10.3390/met10010155.
- Ren, Z. & Junze, J. (1992). Formation of a separated eutectic in Al-Si eutectic alloy. Journal of Materials Science. 27, 4663-4666. https://doi.org/10.1007/BF01166003.
- Mikołajczak, P., Janiszewski, J., & Jackowski, J. (2019). Construction of the facility for aluminium alloys electromagnetic stirring during casting. In Advances in Manufacturing II: Volume 4-Mechanical Engineering (pp. 164-175). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-16943-5_15.
- Thermo-Calc 4.1—Software (2024) Package from Thermo-Calc Software AB. Retrieved June 10, 2023, from www.thermocalc.se.
- MAGMA (2024). Gießereitechnologie GmbH. Kackertstr. 16-18. Retrieved June 5, 2024, from www.magmasoft.de.
- Gustafsson, G., Thorvaldsson, T. & Dunlop, G.L. (1986). The influence of Fe and Cr on the microstructure of cast. Al-Si-Mg alloys. Metallurgical Transactions A. 17, 45-52. https://doi.org/10.1007/BF02644441.
- Prakash S.P., Om P. & Devendra K. (2020). Structure and mechanical behavior of in situ developed Mg2Si phase in magnesium and aluminum alloys – a review. RSC Advances. 10(61), 37327-37345. http://dx.doi.org/10.1039/ D0RA02744H.
- Yan, F. (2013). Development of high strength Al-Mg2Si-Mg based alloy for high pressure diecasting process. PhD thesis. Brunel University Uxbridge, UB8 3PH United Kingdom.
- Hunt, J.D. (2001). Pattern formation in solidification. Science and Technology of Advanced Materials. 2(1), 147-155. https://doi.org/10.1016/S1468-6996(01)00040-7.
- Hunt, J.D. & Lu, S.Z. (1996) Numerical modeling of cellular/dendritic array growth: Spacing and structure predictions. Metallurgical and Materials Transactions 27, 611-623. https://doi.org/10.1007/BF02648950.
- Stefanescu, D. (2009). Science and engineering of casting solidification. Boston, MA, USA: Springer. https://doi.org/10.1007/b135947.
- Kattamis, T.Z. & Flemings, M.C. (1965). Dendrite morphology. Microsegregation and Homogenization of low alloy steel. Transactions of the Metallurgical Society of AIME. 233(5), 992-999.
- Rappaz, M. & Boettinger, W. (1999). On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients. Acta Materialia. 47(11), 3205-3219. https://doi.org/10.1016/S1359-6454(99)00188-3.
- Bouchard, D. & Kirkaldy, J.S. (1997). Prediction of dendrite arm spacing in unsteady- and steady-state heat flow. Metallurgical and Materials Transactions B. 28(4), 651-663. https://doi.org/10.1007/s11663-997-0039-x.
- Steinbach, S. & Ratke, L. (2007). The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys. Metallurgical and Materials Transactions A. 38, 1388-1394. https://doi.org/10.1007/s11661-007-9162-1.
- Mortensen, A. (1991). On the rate of dendrite arm coarsening. Metallurgical Transactions A. 1991, 22, 569-574. https://doi.org/10.1007/BF02656824.
- Voorhees, P.W. & Glicksman, M.E. (1984). Ostwald ripening during liquid phase sintering—Effect of volume fraction on coarsening kinetics. Metallurgical and Materials Transactions A. 15, 1081-1088. https://doi.org/10.1007/BF02644701.
- Ferreira, A.F., Castro, J.A. & Ferreira, L.O. (2017). Predicting secondary-dendrite arm spacing of the Al-4.5wt%Cu alloy during unidirectional solidification. Materials Research. 20(1), 68-75. https://doi.org/10.1590/1980-5373-MR-2015-0150.