Szczegóły

Tytuł artykułu

Assessment of Thermal Conditions by Slow Solidification in Al Alloys and the Facility

Tytuł czasopisma

Archives of Foundry Engineering

Rocznik

2025

Wolumin

vol. 25

Numer

No 2

Autorzy

Afiliacje

Mikolajczak, P. : Poznan University of Technology, Poland

Słowa kluczowe

Aluminum alloys ; Slow solidification ; Temperature field ; Experimental facility and procedure ; Solid fraction curve

Wydział PAN

Nauki Techniczne

Zakres

5-20

Wydawca

The Katowice Branch of the Polish Academy of Sciences

Bibliografia

  1. Shwe, W.H.A., Kay, T.L. & Waing, K.K.O. (2008). The effect of ageing treatment of aluminum alloys for fuselage structure-light aircraft. World Academy of Science, Engineering and Technology. International Journal of Materials and Metallurgical Engineering. 2(10), 46, 696-699.
  2. Miller, W.S., Zhuang, L., Bottema, J., Wittebrood, A.J. & de Smet, P. (2000). Recent development in aluminum alloys for the automotive industry. Materials Science and Engineering. A 280, 37-49. https://doi.org/10.1016/S0921-5093(99)00653-X.
  3. The Aluminum Association, Inc. (1998). Aluminum alloy selection and applications. A monograph of Aluminum Association Incorporation, Washington, D C.
  4. Cubberly, W.H. (1979). Properties and selection: non-ferrous alloys and pure metals. Metals Handbook (Metals Park, OH: American Society for Metals).
  5. Smith, W.F. (1993). Alluminum alloys. In B.J. Clark and Jack Maisel (Eds.), Structure and properties of engineering alloys (pp. 176-242). United States of America: McGraw-Hill Series.
  6. Mondolfo, L.F. (1976). Aluminium Alloys: Structure and Properties. London, UK: Butterworths & Co.
  7. Sarafoglou, P., I., Aristeidakis, J.S., Tzini, M-I. T. & Haidemenopoulos, G.N. (2016). Metallographic Index‐Based quantification of the homogenization state in extrudable aluminum alloys. Metals. 6(5), 121. doi: 10.3390/met6050121.
  8. Stefanescu, D. (1988). The New Metals Hand Book: Casting, ASM International.
  9. Eskin, D.G. & Katgerman, L. (2009). Solidification phenomena related to direct chill casting of aluminium alloys: fundamental studies and future challenges. Materials Technology: Advanced Performance Materials. 24(3), 152-156. DOI: 1179/106678509X12489478523537.
  10. Zhang, H.Nagaumi H. & Cui, J.Z. (2012). Effects of low frequency electromagnetic field of multi-physical fields during DC casting of 7xxx aluminum alloys. Advanced Science Letters. 13(1), 306-311(6). https://doi.org/10.1166/asl.2012.3762.
  11. Bojarevičs, A., Kaldre, I., Milgrāvis, M., Beinerts, T. (2017). Direct chill casting of aluminium alloys under electromagnetic. interaction. In VIII International Scientific Colloquium "Modelling for Materials Processing", 21-22 September 2017 (pp. 259-262). Riga. DOI: 10.22364/mmp2017.42.
  12. Zaïdat, K., Mangelinck-Noël, N., Moreau, R. (2007). Control of melt convection by a travelling magnetic field during the directional solidification of Al–Ni alloys. Comptes Rendus Mecanique. 335, 330-335. DOI: 10.1016/j.crme.2007.05.010.
  13. Patarić, A., Mihailović, M., Marković, M., Sokić, M., Radovanović, A. & Jordović, B. (2021). Microstructure as an essential aspect of EN AW 7075 aluminum alloy quality influenced by electromagnetic field during continuous casting process. Hemijska industrija. 75(1), 31-37. https://doi.org/10.2298/HEMIND201214006P.
  14. Kaldre, I., Milgravis, M., Bojarevics, A. & Beinerts, T. (2021). Electromagnetic processing during directional solidification of particle-strengthened aluminum alloys for additive manufacturing. Materials Proceedings. 3(1), 19, 1-4. https://doi.org/10.3390/IEC2M-09255.
  15. Patarić, A., Mihailovic, M. & Gulisija, Z. (2012). Quantitative metallographic assessment of the electromagnetic casting influence on the microstructure of 7075 Al alloy. Journal of Materials Science. 47, 793-796. DOI 10.1007/s10853-011-5855-3.
  16. Wang, X.J., Zhao, Z.H., Zuo, Y.B., Zhu, Q.F., Qu, F. & Cui, J.Z. (2009). Effects of low frequency electromagnetic field on solidification of 7050 aluminium alloy during hot top casting. Materials Science and Technology. 25(10), 1207-1210. https://doi.org/10.1179/174328408X382172.
  17. Sree Manu, K.M., Barekar, N.S., Lazaro-Nebreda J., Patel, J.B. & Fan, Z. (2021). In-situ microstructural control of A6082 alloy to modify second phase particles by melt conditioned direct chill (MC-DC) casting process – A novel approach. Journal of Materials Processing Technology. 295, 117170, 1-14. https://doi.org/10.1016/j.jmatprotec.2021.117170.
  18. Zhang, Y., Patel, J.B., Lazaro-Nebreda, J. & Fan, Z. (2018). Improved defect control and mechanical property variation in high-pressure die casting of A380 alloy by high shear melt conditioning. The Journal of The Minerals, Metals & Materials Society. 70, 2726-2730. https://doi.org/10.1007/s11837-018-3005-y.
  19. Brollo, G.L., Proni, C.T.W. & Zoqui, E.J. (2018). Thixoforming of an Fe-Rich Al-Si-Cu Alloy—thermodynamic characterization, microstructural evolution, and rheological behavior. 8(5), 332, 1-24. https://doi.org/10.3390/met8050332.
  20. Haga, T. & Suziki, S. (2001). Casting of aluminum alloy ingots for thixoforming using a cooling slope. Journal of materials processing technology. 118(1-3), 169-172. https://doi.org/10.1016/S0924-0136(01)00888-3.
  21. Eslami, M., Payandeh, M., Deflorian, F., Jarfors, A.E.W. & Zanella, C. (2018). Effect of segregation and surface condition on corrosion of rheo-HPDC Al–Si alloys. Metals. 8(4), 209, 1-18. https://doi.org/10.3390/met8040209.
  22. Mohammed, M.N., Omar, M.Z., Al-Zubaidi, S., Alhawari, K.S. & Abdelgnei, M.A. (2018). Microstructure and mechanical properties of thixowelded AISI D2 tool steel. Metals. 8(5), 316, 1-16. https://doi.org/10.3390/met8050316.
  23. Wang, H., Davidson, C.J. & St. John, D.H. (2004). Semisolid microstructural evolution of AlSi7Mg during partial remelting. Materials Science and Engineering: A. 368(1-2), 159-167. https://doi.org/10.1016/j.msea.2003.10.305.
  24. Mikolajczak, P. & Ratke, L. (2013). Effect of stirring induced by rotating magnetic field on β-Al5FeSi intermetallic phases during directional solidification in AlSi alloys. International Journal of Cast Metals Research. 26(6), 339-353. https://doi.org/10.1179/1743133613Y.0000000069.
  25. Mikolajczak, P. & Ratke, L. (2011). Intermetallic phases and microstructure in AlSi alloys influenced by fluid flow. The Minerals, Metals & Materials Society (TMS). 10, 9781118062173. https://doi.org/10.1002/9781118062173.ch104.
  26. Mikolajczak, P. (2017). Microstructural evolution in AlMgSi alloys during solidification under electromagnetic stirring. 7(3), 89, 1-16. https://doi.org/10.3390/met7030089.
  27. Mikolajczak, P. (2021). Effect of rotating magnetic field on microstructure in AlCuSi alloys. Metals. 11(11), 1804, 1-24. https://doi.org/10.3390/met11111804.
  28. Mikolajczak, P. (2023). Distribution and morphology of α-Al, Si and Fe-Rich phases in Al–Si–Fe alloys under an electromagnetic field. Materials. 16(9), 3304. https://doi.org/10.3390/ma16093304.
  29. Mikolajczak, P. (2023). Morphology and distribution of α-Al and Mn-rich phases in Al-Si-Mn alloys under an electromagnetic stirring. Archives of Foundry Engineering. 23(3), 74-87. DOI: 24425/afe.2023.146665.
  30. Mikolajczak, P. (2023). Flow effect on Si crystals and Mn-phases in hypereutectic and eutectic Al-Si-Mn alloys. Archives of Foundry Engineering. 23(4), 72-86. DOI: 24425/afe.2023.146681.
  31. Jie, J.C., Zou, Q.C., Wang, H.W., Sun, J.L., Lu, Y.P., Wang, T.M. & Li, T.J. (2014). Separation and purification of Si from solidification of hypereutectic Al-Si melt under rotating magnetic field. Journal of Crystal Growth. 399, 43-48. http://dx.doi.org/10.1016/j.jcrysgro.2014.04.003.
  32. Wenzhou, Y., Wenhui, M., Guoqiang, L., Haiyang, X., Li, S. & Dai, Y. (2014). Effect of electromagnetic stirring on the enrichment of primary silicon from Al-Si melt. Journal of Crystal Growth. 405, 23-28. http://dx.doi.org/10.1016/j.jcrysgro.2014.07.035.
  33. Ma, X., Lei, Y., Yoshikawa, T., Zhao, B. & Morita, K. (2015). Effect of solidification conditions on the silicon growth and refining using Si-Sn melt. Journal of Crystal Growth. 430, 98-102. http://dx.doi.org/10.1016/j.jcrysgro.2015.08.001.
  34. Zhu, K., Hu, J., Ma, W., Wei, K., Lv, T. & Dai, Y.(2019). Effect of solidification parameters and magnetic field on separation of primary silicon from hypereutectic Ti-85 wt.% Si melt. Journal of Crystal Growth. 522, 78-85. https://doi.org/10.1016/j.jcrysgro.2019.05.012.
  35. Lv, G., Bao, Y., Zhang, Y., He, Y., Ma, W. & Leu, Y. (2018). Effects of electromagnetic directional solidification conditions on the separation of primary silicon from Al-Si alloy with high Si content. Materials Science in Semiconductor Processing. 81, 139-148. https://doi.org/10.1016/j.mssp.2018.03.006.
  36. Yoshikawa, T. & Morita, K. (2005). Refining of Si by the solidification of Si-Al melt with electromagnetic force. ISIJ International. 45(7), 967-971. https://doi.org/10.2355/isijinternational.45.967.
  37. Huang, F., Zhao, L., Liu, L., Hu, Z., Chen, R. & Dong, Z. (2019). Separation and purification of Si from Sn-30Si alloy by electromagnetic semi-continuous directional solidification. Materials Science in Semiconductor Processing. 99, 54-61. https://doi.org/10.1016/j.mssp.2019.04.015.
  38. He, Y., Yang, X., Duan, L., Li, S., Chen, Z., Ma, W., Lv, G. & Xing, A. (2021). Silicon separation and purification process from hypereutectic aluminum-silicon for organosilicon use. Materials Science in Semiconductor Processing. 121, 105333, 1-11, 1-11. https://doi.org/10.1016/j.mssp.2020.105333.
  39. Jiang, W., Yu, W., Li, J., You, Z., Li, C. & Lv, X. (2018). Segregation and morphological evolution of Si phases during electromagnetic directional solidification of hypereutectic Al-Si alloys. Materials. 12(1), 10, 1-14. DOI: 10.3390/ma12010010.
  40. Xue, H., Lv, G., Ma, W., Chen, D. & Yu, J. (2015). Separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields. Metallurgical and Materials Transactions A. 46, 2922-2932. DOI: 10.1007/s11661-015-2889-1.
  41. Sun, Jl., Zou, Qc., Jie, Jc. & Li, T. (2016). Separation of primary Si and impurity boron removal from Al-30%Si-10%Sn melt under a traveling magnetic field. China Foundry. 13(4), 284-288. https://doi.org/10.1007/s41230-016-6036-4.
  42. Zou, Q., Tian, H., Zhang, Z., Sun, C., Jie, J., Han, N. & An, X. (2020). Controlling segregation behaviour of primary Si in hypereutectic Al-Si alloy by electromagnetic stirring. Metals. 10(9), 1129, 1-13. https://doi.org/10.3390/met10091129.
  43. Zou, Q., Han, N., Zhang, Z., Jie, J., Xu, F. & An, X. (2020). Enhancing segregation behaviour of impurity by electromagnetic stirring in the solidification process of Al-30Si alloy. Metals. 10(1), 155, 1-11. https://doi.org/10.3390/met10010155.
  44. Ren, Z. & Junze, J. (1992). Formation of a separated eutectic in Al-Si eutectic alloy. Journal of Materials Science. 27, 4663-4666. https://doi.org/10.1007/BF01166003.
  45. Mikołajczak, P., Janiszewski, J., & Jackowski, J. (2019). Construction of the facility for aluminium alloys electromagnetic stirring during casting. In Advances in Manufacturing II: Volume 4-Mechanical Engineering (pp. 164-175). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-030-16943-5_15.
  46. Thermo-Calc 4.1—Software (2024) Package from Thermo-Calc Software AB. Retrieved June 10, 2023, from www.thermocalc.se.
  47. MAGMA (2024). Gießereitechnologie GmbH. Kackertstr. 16-18. Retrieved June 5, 2024, from www.magmasoft.de.
  48. Gustafsson, G., Thorvaldsson, T. & Dunlop, G.L. (1986). The influence of Fe and Cr on the microstructure of cast. Al-Si-Mg alloys. Metallurgical Transactions A. 17, 45-52. https://doi.org/10.1007/BF02644441.
  49. Prakash S.P., Om P. & Devendra K. (2020). Structure and mechanical behavior of in situ developed Mg2Si phase in magnesium and aluminum alloys – a review. RSC Advances. 10(61), 37327-37345. http://dx.doi.org/10.1039/ D0RA02744H.
  50. Yan, F. (2013). Development of high strength Al-Mg2Si-Mg based alloy for high pressure diecasting process. PhD thesis. Brunel University Uxbridge, UB8 3PH United Kingdom.
  51. Hunt, J.D. (2001). Pattern formation in solidification. Science and Technology of Advanced Materials. 2(1), 147-155. https://doi.org/10.1016/S1468-6996(01)00040-7.
  52. Hunt, J.D. & Lu, S.Z. (1996) Numerical modeling of cellular/dendritic array growth: Spacing and structure predictions. Metallurgical and Materials Transactions 27, 611-623. https://doi.org/10.1007/BF02648950.
  53. Stefanescu, D. (2009). Science and engineering of casting solidification. Boston, MA, USA: Springer. https://doi.org/10.1007/b135947.
  54. Kattamis, T.Z. & Flemings, M.C. (1965). Dendrite morphology. Microsegregation and Homogenization of low alloy steel. Transactions of the Metallurgical Society of AIME. 233(5), 992-999.
  55. Rappaz, M. & Boettinger, W. (1999). On dendritic solidification of multicomponent alloys with unequal liquid diffusion coefficients. Acta Materialia. 47(11), 3205-3219. https://doi.org/10.1016/S1359-6454(99)00188-3.
  56. Bouchard, D. & Kirkaldy, J.S. (1997). Prediction of dendrite arm spacing in unsteady- and steady-state heat flow. Metallurgical and Materials Transactions B. 28(4), 651-663. https://doi.org/10.1007/s11663-997-0039-x.
  57. Steinbach, S. & Ratke, L. (2007). The influence of fluid flow on the microstructure of directionally solidified AlSi-base alloys. Metallurgical and Materials Transactions A. 38, 1388-1394. https://doi.org/10.1007/s11661-007-9162-1.
  58. Mortensen, A. (1991). On the rate of dendrite arm coarsening. Metallurgical Transactions A. 1991, 22, 569-574. https://doi.org/10.1007/BF02656824.
  59. Voorhees, P.W. & Glicksman, M.E. (1984). Ostwald ripening during liquid phase sintering—Effect of volume fraction on coarsening kinetics. Metallurgical and Materials Transactions A. 15, 1081-1088. https://doi.org/10.1007/BF02644701.
  60. Ferreira, A.F., Castro, J.A. & Ferreira, L.O. (2017). Predicting secondary-dendrite arm spacing of the Al-4.5wt%Cu alloy during unidirectional solidification. Materials Research. 20(1), 68-75. https://doi.org/10.1590/1980-5373-MR-2015-0150.

 

 

Data

17.04.2025

Typ

Article

Identyfikator

DOI: 10.24425/afe.2025.153788 ; eISSN 2299-2944
×