Szczegóły
Tytuł artykułu
Effect of Iron Content on Crystallization and Microstructure of EN AC-42000 AlloyTytuł czasopisma
Archives of Foundry EngineeringRocznik
2025Wolumin
vol. 25Numer
No 2Autorzy
Afiliacje
Matuła, T. : Silesian University of Technology, Faculty of Materials Engineering, Krasińskiego 8, 40-019 Katowice, Poland ; Siwiec, G. : Silesian University of Technology, Faculty of Materials Engineering, Krasińskiego 8, 40-019 Katowice, Poland ; Piątkowski, J. : Silesian University of Technology, Faculty of Materials Engineering, Krasińskiego 8, 40-019 Katowice, PolandSłowa kluczowe
Cast aluminum alloys ; Iron phases ; Microstructure ; Shrinkage porosityWydział PAN
Nauki TechniczneZakres
41-47Wydawca
The Katowice Branch of the Polish Academy of SciencesBibliografia
- MacKenzie, S.D., Totten, G.E. (2005). Analytical characterization of aluminum, steel, and superalloys. (1st ed.). Boca Raton: Taylor and Francis Group.
- Xinjin, Cao, & Campbell, J. (2006). Morphology of β-Al5FeSi phase in Al-Si cast alloys. Materials Transaction. 47(5), 1303-1312. https://doi.org/10.2320/matertrans. 47.1303.
- Taylor, J.A. (2004). The effect of iron in Al-Si cast alloys. In 35th Australian Foundry Institute National Conference, 31 October - 3 November 2004 (pp. 148-157). Australia: Australian Foundry Institute.
- Ebhota, W.S. Tien-Chien, J. (2018). Intermetallics formation and their effect on mechanical properties of Al-Si-X alloys. In Mahmood Aliofkhazraei (Eds.), Intermetallic Compounds - Formation and Applications (pp. 21-38). London, United Kingdom: IntechOpen.
- Taylor, J.A. (2012). Iron-containing intermetallic phases in Al-Si based casting alloys. Procedia Materials Science. 1, 19-33. DOI: 10.1016/j.mspro.2012.06.004.
- Zavadska, D., Tillova, E., Svesova, I., Chalupova, M., Kucharikova, L. & Belan, J. (2019). The effect of iron content on microstructure and porosity of secondary AlSi7Mg0.3 alloy. Periodica Polytechnica Transportation Engineering. 47(4), 283-289. https://doi.org/10.3311/PPtr.12101.
- Orozco-Gonzales, P., Castro-Roman, M., Martinez, A.I., Herrero-Trejo, M., Lopez, A.A. & Quispe-Marcatoma, J. (2010). Precipitation of Fe-rich intermetallic phase in liquid Al-13.58Si-11.59Fe-1.19Mn alloy. 18(8), 1617-1622. https://doi.org/10.1016/j.intermet.2010.04.014.
- Belov, N.A., Aksenov, A.A. & Eskin, D.G. (2002). Iron in aluminum alloys. Impurity and Alloying Element (1st ed.). New York: Taylor & Francis Inc.
- Liu, G., Gong, M., Xie, D. & Wang, J. (2019). Structures and mechanical properties of Al-Al2Cu interfaces. The Journal of The Minerals, Metals & Materials Society. 71, 1200-1208. DOI: 10.1007/s11837-019-03333.
- Hurtalowa, L., Tillova, E. & Chalupova, M. (2012). Identification and analysis of intermetallic phases in age-hardened recycled AlSi9Cu3 alloy. Archive of Mechanical Engineering. LIX(4), 385-393. DOI: 10.2478/v10180-012-0020-3.
- Lu, L. & Dahle, A.K. (2005). Iron-rich intermetallic phases and their role in casting defect formation in hypoeutectic Al-Si alloys. Metallurgical and Mechanical Transactions. 36A, 819- https://doi.org/10.1007/s11661-005-1012-4.
- Xiao, F., Li, L., Zhou, R., Li, Y., Jiang, Y., Lu & D. (2018). Effect of melt treatment on Fe-rich phase in Al-25Si-2Fe-2Mn alloy. Advances in Materials Processing. 865-879. DOI: 10.1007/978-981-13-0107-0_85.
- Piątkowski, J. (2020). The crystallization of the AlSi9 alloy designed for the alfin processing of ring supports in engine pistons. Archives of Foundry Engineering. 20(2), 65-70. DOI 10.24425/afe.2020.131304.