Details

Title

Numerical Simulation of Multiphase Flow in a Physical Model of a Foundry Degassing Unit

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

vol. 25

Issue

No 2

Authors

Affiliation

Manoch, L. : Department of Materials and Engineering Metallurgy, Faculty of Mechanical Engineering, University of West Bohemia, 301 00 Pilsen, Czech Republic ; Manoch, L. : Environmental Research Department, Institute of Technology and Business, 370 01 České Budějovice, Czech Republic ; Socha, L. : Environmental Research Department, Institute of Technology and Business, 370 01 České Budějovice, Czech Republic ; Sviželová, J. : Environmental Research Department, Institute of Technology and Business, 370 01 České Budějovice, Czech Republic ; Gryc, K. : Environmental Research Department, Institute of Technology and Business, 370 01 České Budějovice, Czech Republic ; Mohamed, A. : Environmental Research Department, Institute of Technology and Business, 370 01 České Budějovice, Czech Republic ; Häusler, J. : Die-casting Division, MOTOR JIKOV Slévárna a.s., 370 04 České Budějovice, Czech Republic

Keywords

Numerical modelling ; CFD ; Aluminium refining ; Multiphase flow ; Model validation

Divisions of PAS

Nauki Techniczne

Coverage

53-60

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  • Saternus, M., Merder, T. & Warzecha, P. (2011). Numerical and physical modelling of aluminium barbotage process. Solid State Phenomena. 176, 1-10. DOI: 10.4028/www.scientific.net/SSP.176.1.
  • Yamamoto, T., Takahashi, H., Komarov, S.V., Shigemitsu, M., Taniguchi, R. & Ishiwata Y. (2021). Physical modeling of rotary flux injection in an aluminum melting furnace. Metallurgical and Materials Transactions B. 52(5), 3363-3372. DOI: 10.1007/s11663-021-02265-9.
  • Liu, X., Zhang, Z., Hu, W., Le, Q., Bao, L., Cui, J. & Jiang, J. (2015). Study on hydrogen removal of AZ91 alloys using ultrasonic argon degassing process. Ultrasonics Sonochemistry. 26, 73-80. DOI: 10.1016/j.ultsonch.2014.12.015.
  • Yamamoto, T., Kato, K., Komarov, S.V., Taniguchi, R. & Ishiwata, Y. (2020) Evaluation of aluminum dross generation rate during mechanical stirring of aluminum through model experiment and numerical simulation. Metallurgical and Materials Transactions B. 51(4), 1836-1846. DOI: 10.1007/s11663-020-01842-8.
  • Abreu-López, D., Amaro-Villeda, A., Acosta-González, F., González-Rivera, C. & Ramírez-Argáez, M. (2017). Effect of the impeller design on degasification kinetics using the impeller injector technique assisted by mathematical modeling. Metals. 7(4), 132, 1-14. ISSN 2075-4701. DOI: 10.3390/met7040132.
  • Hernández-Hernández, M., Cruz-Mendez, W., González-Rivera, C. & Ramírez-Argáez, M. A. (2014). Effect of process variables on kinetics and gas consumption in rotor-degassing assisted by physical and mathematical modeling. Materials and Manufacturing Processes. 30(2), 216-221. DOI: 10.1080/10426914.2014.952303.
  • Mancilla, E., Cruz‐Méndez, W., Ramírez‐Argáez, M.A., González‐Rivera, C. & Ascanio, G. (2019). Experimental measurements of bubble size distributions in a water model and its influence on the aluminum kinetics degassing. The Canadian Journal of Chemical Engineering. 97(S1), 1729-1740. DOI: 10.1002/cjce.23432.
  • Gyarmati, G., Fegyverneki, G., Tokár, M. & Mende, T. (2021). The effects of rotary degassing treatments on the melt quality of an Al–Si casting alloy. International Journal of Metalcasting. 15(1), 141-151. DOI: 10.1007/s40962-020-00428-z.
  • Versteeg, H.K. (2007). An introduction to computational fluid dynamics: the finite volume method. (2nd ed.). Harlow: Pearson/Prentice Hall.
  • Wendt, J.F. (2008). Computational Fluid Dynamics: An Introduction. (3rd ed.). Heidelberg: Springer Berlin.
  • Abreu-López, D., Dutta, A., Camacho-Martínez, J.L., Trápaga-Martínez, G. & Ramírez-Argáez, M.A. (2018). Mass transfer study of a batch aluminum degassing ladle with multiple designs of rotating impellers. Journal of the Minerals, Metals, and Materials Society. 70(12). 2958-2967. DOI: 10.1007/s11837-018-3147-y.
  • Yamamoto, T., Suzuki, A., Komarov, S.V. & Ishiwata, Y. (2018). Investigation of impeller design and flow structures in mechanical stirring of molten aluminum. Journal of Materials Processing Technology. 261, 164-172. DOI: 10.1016/j.jmatprotec.2018.06.012.
  • Gómez, E.R., Zenit, R., Rivera, C.G., Trápaga, G. & Ramírez-Argáez, M.A. (2013). Mathematical modeling of fluid flow in a water physical model of an aluminium degassing ladle equipped with an impeller-injector. Metallurgical and Materials Transactions B. 44, 423-435. DOI: 10.1007/s11663-012-9774-8
  • Warke, V.S., Shankar, S. & Makhlouf, M.M. (2005). Mathematical modeling and computer simulation of molten aluminum cleansing by the rotating impeller degasser. Journal of Materials Processing Technology. 168(1), 119-126. DOI: 10.1016/j.jmatprotec.2004.10.016.
  • Mirgaux, O., Ablitzer, E., Waz, E. & Bellot, J.P. (2009). Mathematical modeling and computer simulation of molten aluminum purification by flotation in stirred reactor. Metallurgical and Materials Transactions B. 40B, 363-375. DOI: s11663-009-9233-3.
  • Merder, T., Saternus, M. & Warzecha, P. (2014). Possibilities of 3D model application in the process of aluminium refining in the unit with rotary impeller. Archives of Metallurgy and Materials. 59(2), 789-794. DOI: 10.2478/amm-2014-0134.
  • Yamamoto, T., Kato, W., Komarov, S.V. & Ishiwata, Y. (2019). Investigation on the surface vortex formation during mechanical stirring with an axial-flow impeller used in an aluminum process. Metallurgical and Materials Transactions B. 50(6), 2547-2556. DOI: 10.1007/s11663-019-01681-2.
  • Wilcox, D.C. (2006). Turbulence modeling for CDF. (3rd ed.). La Canada: DCW industries.
  • Launder, B.E. & Spalding, D.B. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering. 3(2), 269-289. https://doi.org/10.1016/0045-7825(74)90029-2.
  • Menter, F.R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal. 32(8), 1598-1605. ISSN 0001-1452. DOI: 10.2514/3.12149.
  • Launder, B.E., Spalding, D.B. (1972). Lectures in mathematical Models of turbulence. London: Academic Press.
  • Hirt, C.W & Nichols, B.D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics. 39(1), 201-225. DOI: 10.1016/0021-9991(81)90145-5.
  • Ferziger, J.H., Perić, M. (2012). Computational Methods for Fluid Dynamics. (3rd ed.). Heidelberg: Springer Berlin.
  • Prášil, T., Socha, L., Gryc, K., Sviželová, J., Saternus, M., Merder, T., Pieprzyca, J. & Gráf, M. (2022). Using physical modelling to optimize the aluminium refining process. Materials. 15(20), 7385, 1-12. DOI: 10.3390/ma15207385.
  • Mancilla, E., Cruz-Méndez, W., Garduño, I.E., González-Rivera, C., Ramírez-Argáez, M.A. & Ascanio, G. (2017). Comparison of the hydrodynamic performance of rotor-injector devices in a water physical model of an aluminum degassing ladle. Chemical Engineering Research and Design. 118, 158-169. DOI: 10.1016/j.cherd.2016.11.031.

Date

13.06.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.153794
×