Szczegóły

Tytuł artykułu

Structure Characteristics of Si/Si-Mo Ductile Irons Solidified on a Metallic Chill

Tytuł czasopisma

Archives of Foundry Engineering

Rocznik

2025

Wolumin

vol. 25

Numer

No 2

Autorzy

Afiliacje

Stan, I. : National University of Science and Technology Politehnica Bucharest, Materials Science and Engineering Faculty,313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania ; Anca, D.E. : National University of Science and Technology Politehnica Bucharest, Materials Science and Engineering Faculty,313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania ; Chisamera, M. : National University of Science and Technology Politehnica Bucharest, Materials Science and Engineering Faculty,313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania ; Riposan, I. : National University of Science and Technology Politehnica Bucharest, Materials Science and Engineering Faculty,313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania ; Stan, S. : National University of Science and Technology Politehnica Bucharest, Materials Science and Engineering Faculty,313 Splaiul Independentei, Sector 6, 060042 Bucharest, Romania

Słowa kluczowe

Ductile cast iron ; Si/Si-Mo alloying ; Nodular graphite ; Metallic chill ; Carbides ; Ferrite ; Graphite shape factors ; Nodularity

Wydział PAN

Nauki Techniczne

Zakres

61-68

Wydawca

The Katowice Branch of the Polish Academy of Sciences

Bibliografia

  • Campbell, J. (2015). Complete Casting Handbook. Butterworth Heinemann Publisher.
  • Foundry: Management&Technology. (2015). What, Why and Where for Chilling Large Molds. Retrieved June 20, 2024, from https:///foundrymag.com/ask-the-expert/article/21928515/ what-why-and-where-for-chilling-large-molds.
  • Purushotham, G. & Hemanth, J. (2014). Action of chills on microstructure, mechanical properties of chilled ASTM A 494 M grade Nickel alloy reinforced with fused SiO2 metal matrix composite. Procedia Materials Science. 5, 426-433. https://doi.org/10.1016/j.mspro.2014.07.285.
  • Jain, S.K. & Jain, V. (2014). Effect of chill size and material on temperature gradient in aluminium alloys casting. Journal of Material Science and Mechanical Engineering (JMSME). 1(2), 106-112. ISSN: 2393-9109.
  • Piekos M. & Zych, J. (2019). Investigations of the influence of the zone of chills on the casting made of AlSi7Mg alloy with various wall thicknesses. Archives of Foundry Engineering. 19(1), 127-132. DOI 10.24425/afe.2019.127106.
  • Gobinath, V.M., Adarsh Kumar, Annamalai K. & Rajadurai A. (2015). Effect of pouring temperature in chilled cast iron with different chill material. International Journal of Applied Engineering Research. 10(57), 160-163.
  • Kumruoglu, L.C. (2009). Mechanical and microstructure properties of chilled cast iron camshaft: experimental and computer aided evaluation. The Journal of Materials and Design. 30(4), 927-938. https://doi.org/10.1016/j.matdes.2008.07.008.
  • Yang, Y., Rosochowski, A., Wang, X. & Jiang, Y. (2004). Mechanism of “black line” formation in chilled cast iron camshafts. Journal of Materials Processing Technology. 145(2), 264-267. https://doi.org/10.1016/S0924-0136(03)00678-2.
  • Ping, L., Fengjun, L., Anke, C. & Bokang, W. (2009). Fracture analysis of chilled cast iron camshaft. China Foundry. 6(2), 104-108.
  • Binfeng, H (2012). Effect of Lanthanum on microstructure and properties of chilled iron camshaft. China Foundry, 9(1), 60-63.
  • Vaskova, I, Conev, M. & Hrubovcakova, M. (2017). The influence of using different types of risers or chills on shrinkage production for different wall thickness for material EN-GJS-400-18LT. Archives of Foundry Engineering. 17(2), 131-136. DOI: 10.1515/afe-2017-0064.
  • Hajkowski, J., Roquet, P., Khamashta, M., Codina, E. & Ignaszak, Z. (2017). Validation tests of prediction modules of shrinkage defects in cast iron sample. Archives of Foundry Engineering. 17(1), 57-66. DOI: 10.1515/afe-2017-0011.
  • Yoo, S.M., Cho, Y.S., Lee, C.C., Kim, J.H., Kim, C.H. & Choi J.K. (2007). Optimization of casting conditions for heat and abrasion resistant large grey iron castings. China Foundry. 4(2), 124-127.
  • Holmgren, D., Dioszegi, A. & Svensson, I.L. (2007). Effects of carbon content and solidification rate on thermal conductivity of grey cast iron. China Foundry. 4(3), 210-214.
  • Riebisch, M., Seiler, C., Pustal, B. & Buhrig-Polaczek, A. (2019). Microstructure of as-cast high-silicon ductile iron produced via permanent mold casting. International Journal of Metalcasting. 13(1), 112-120. https://doi.org/10.1007/s40962-018-0232-5.
  • Stan, I., Anca, D.E., Riposan, I. & Stan, S. (2023). Solidification pattern of 4.5%Si ductile iron in metal mould versus sand mould castings. Journal of Thermal Analysis and Calorimetry. 148, 1805-1817. https://doi.org/10.1007/s10973-022-11832-4.
  • Anca, D.E., Stan, , Riposan, I. & Stan, S. (2022). Graphite compactness degree and nodularity of high-si ductile iron produced via permanent mold versus sand mold casting. Materials. 15(8), 2712, 1-19. https://doi.org/10.3390/ma15082712.
  • Riposan, I., Stan, S., Anca, D., Stefan, E., Stan, I. & Chisamera, M. (2023). Structure characteristics of high-Si ductile cast irons. International Journal of Metalcasting. 17, 2389-2412. https://doi.org/10.1007/s40962-022-00938-y.
  • Stan, S., Riposan, I., Chisamera, M. & Stan, I. (2019). Solidification characteristics of silicon alloyed ductile cast irons. Journal of Materials Engineering and Performance. 28(1), 278-286. https://doi.org/10.1007/s11665-018-3828-2.
  • ISO 945-4-2019. Microstructure of cast irons-part 4: determination of nodularity in spheroidal graphite cast irons. International Standard Organization (ISO). Geneva, Switzerland.
  • GB/T 9441-2009. Metallographic test for evaluation of spheroidal graphite cast iron (National Standard of the People’s Republic of China). Standardization Administration of China. Beijing, China.
  • ISO 16112:2017. Compacted (vermicular) graphite cast irons- classification. International Standard Organization (ISO). Geneva, Switzerland.
  • Riposan, I., Anca, D., Stan, I., Chisamera, M. & Stan, S. (2022). Graphite nodularity evaluation in high-Si ductile cast irons. 15(21) 7685, 1-14. https://doi.org/10.3390/ma15217685.

 

 

Data

13.06.2025

Typ

Article

Identyfikator

DOI: 10.24425/afe.2025.153795 ; eISSN 2299-2944
×