Details
Title
Phase Transformations of Siderite in Different Atmospheres - Mössbauer Spectroscopy StudyJournal title
Archives of Foundry EngineeringYearbook
2025Volume
vol. 25Issue
No 2Authors
Affiliation
Kądziołka-Gaweł, M. : University of Silesia, Poland ; Adamczyk, Z. : Silesian University of Technology, Poland ; Wojtyniak, M. : Silesian University of Technology, Poland ; Klimontko, J. : University of Silesia, Poland ; Nowak, J. : Silesian University of Technology, PolandKeywords
Siderite ; Fe-oxides ; Thermal decomposition ; Mössbauer spectroscopyDivisions of PAS
Nauki TechniczneCoverage
69-73Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Klein, C. (2005). Some precambrian banded iron-formations (biifs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist. 90(10), 1473-1499. https://doi.org/10.2138/am.2005.1871.
- Cerantola, V., McCammon, C., Kupenko, I., Kantor, I., Marini, C., Wilke, M., Ismailova, L., Solopova, N., Chumakov, A., Pascarelli, S. & Dubrovinsky, L. (2015) High-pressure spectroscopic study of siderite (FeCO3) with a focus on spin crossover. American Mineralogist. 100(11-12), 2670-2681. https://doi.org/10.2138/am-2015-5319.
- Zhu, X., Han, Y., Sun, Y., Gao, P. & Li, Y. (2022). Thermal decomposition of siderite ore in different flowing atmospheres: phase transformation and magnetism. Mineral Processing and Extractive Metallurgy Review. 44(3), 201-208. DOI: 10.1080/08827508.2022.2040498.
- Mohamed, A., Al-Afnan, S., Elkatatny, S. & Hussein, I. (2020) Prevention of barite sag in water-based drilling fluids by a urea-based additive for drilling deep formations. Sustainability. 12(7), 2719, 1-19. https://doi.org/10.3390/su12072719.
- Kruszewski, Ł. & Ciesielczuk, J. (2020). The behaviour of siderite rocks in an experimental imitation of pyrometamorphic processes in coal-waste fires: upper and lower silesian case, Poland. Minerals. 10(7), 586, 1-23. https://doi.org/10.3390/min10070586.
- Ordoñez, L., Vogel, H., Sebag, D., Ariztegui, D., Adatte, T., Russell, J., Kallmeyer, J., Vuillemin, A., Friese, A., Crowe, S., Bauer, K., Simister, R., Henny, C., Nomosatryo, S. & Bijaksana, S. (2019). Empowering conventional Rock-Eval pyrolysis for organic matter characterization of the siderite-rich sediments of Lake Towuti (Indonesia) using End-Member Analysis. Organic Geochemistry. 134, 32-44. DOI: 10.1016/j.orggeochem.2019.05.002.
- Ponomar, V.P., Dudchenko, N.O. & Brik, A.B. (2017). Phase transformations of siderite ore by the thermomagnetic analysis data. Journal of Magnetism and Magnetic Materials. 423, 373-378. DOI: 10.1016/j.jmmm.2016.09.124.
- Isambert, A., Valet, J., Gloter, A. & Guyot, F. (2003). Stable Mn-magnetite derived from Mn-siderite by heating in air. Journal of Geophysical Research: Solid Earth. 108(B6), 2283, 1-9. DOI: 10.1029/2002JB002099.
- Luo, Y.H., Zhu, D.Q., Pan, J. & Zhou, X.L. (2016) Thermal decomposition behaviour and kinetics of Xinjiang siderite ore. Mineral Processing and Extractive Metallurgy. 125(1), 17-25. DOI: 10.1080/03719553.2015.1118213.
- Rancourt, D.G. & Ping, J.P. (1991). Voigt-based methods for arbitrary-shape static hyperfine parameter distributions in Mössbauer spectroscopy. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 58(1), 85-97. DOI: 10.1016/0168-583X(91)95681-3.
- Piazzi, M., Morana, M., Coïsson, M., Marone, F., Campione, M., Bindi, L., Jones, A., Ferrara, E. & Alvaro, M. (2019). Multi-analytical characterization of Fe-rich magnetic inclusions in diamonds. Diamond and Related Materials. 98, 107489, 1-9. DOI: 10.1016/j.diamond.2019.107489.
- Leon-Reina, L., Garcia-Mate, M., Alvarez-Pinazo, G., Santacruz, I., Vallcorba, O., De la Torre, G. & Aranda, M. (2016) Accuracy in Rietveld quantitative phase analysis: a comparative study of strictly monochromatic Mo and Cu radiations. Journal of Applied Crystallography. 49, 722-735. DOI: 1107/S1600576716003873.
- Dhupe, A. & Gokarn, A. (1990). Studies in the thermal decomposition of natural siderites in the presence of air. International Journal of Mineral Processing. 28(3-4), 209-220. DOI: 10.1016/0301-7516(90)90043-X.
- Ristić, M., Krehula, S., Reissner, M. & Musić, S. (2017). 57Fe Mössbauer, XRD, FT-IR, FE SEM Analyses of Natural Goethite, Hematite and Siderite. Croatica Chemica Acta. 90(3), 499-507. DOI: 10.5562/cca3233.
- Klekotka, U., Winska, E., Satuła, D. & Kalska-Szostko, B. (2018). Mössbauer studies of surface modified magnetite particles. Acta Physica Polonica A. 134(5), 1003-1006. DOI: 10.12693/APhysPolA.134.1003.
- Gervits, N., Gippius, A., Tkachev, A., Demikhov, E., Starchikov, S., Lyubutin, I., Vasiliev, A., Chekhonin, V., Abakumov, M., Semkina, M. & Mazhuga, A. (2019). Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents. Beilstein Journal of Nanotechnology. 10(1), 1964-1972. DOI: 10.3762/bjnano.10.193.
- Lyubutin, I., Lin, C., Korzhetskiy, Yu., Dmitrieva, T. & Chiang, R. (2009). Mössbauer spectroscopy and magnetic properties of hematite/magnetite nanocomposites. Journal of Applied Physics. 106(3), 034311. DOI: 10.1063/1.3194316.
- Mendoza, E., Santos, A., Lopez, E., Drozd, V. & Durygin, A. (2019). Iron oxides as efficient sorbents for CO2 Journal of Materials Research and Technology. 8(3), 2944-2956. DOI: 10.1016/j.jmrt.2019.05.002.
- McCarty, K., Monti, M., Nie, S., Siegel, D., Starodub, E., El Gabaly, F., McDaniel, A., Shavorskiy, A., Tyliszczak, T., Bluhm, H., Bartelt, N. & de la Figuera, J. (2014). Oxidation of magnetite(100) to hematite observed by in situ spectroscopy and microscopy. The Journal of Physical Chemistry C. 118(34), 19768-19777. DOI: 10.1021/jp5037603.