Szczegóły
Tytuł artykułu
Hot Tearing Evaluation of Al-0.9Mg-0.7Si Aluminium-cast AlloyTytuł czasopisma
Archives of Foundry EngineeringRocznik
2025Wolumin
vol. 25Numer
No 2Autorzy
Afiliacje
Zulfadhli, Z. : Doctoral Program-School of Engineering, Universitas Syiah Kuala, Indonesia ; Zulfadhli, Z. : Department of Mechanical and Industrial Engineering, Syiah Kuala University, Indonesia ; Akhyar, A. : Department of Mechanical and Industrial Engineering, Syiah Kuala University, Indonesia ; Ali, N. : Department of Mechanical and Industrial Engineering, Syiah Kuala University, Indonesia ; Arhami, A. : Department of Mechanical and Industrial Engineering, Syiah Kuala University, Indonesia ; Huzni, S. : Department of Mechanical and Industrial Engineering, Syiah Kuala University, Indonesia ; Maulana, R. : Department of Mechanical and Industrial Engineering, Syiah Kuala University, Indonesia ; Ismail, Y.S. : Department of Science and Biology, Universitas Syiah Kuala, Darussalam, IndonesiaSłowa kluczowe
Hot tear ; Al-0.9Mg-0.7Si cast alloy ; Solidification rate ; Thermal contraction ; Constrained rod castingWydział PAN
Nauki TechniczneZakres
74-80Wydawca
The Katowice Branch of the Polish Academy of SciencesBibliografia
- Li, S., Sadayappan, K. & Apelian, D. (2011). Characterisation of hot tearing in Al cast alloys: methodology and procedures. International Journal of Cast Metals Research. 24(2), 88-95. https://doi.org/10.1179/1743133610Y.0000000004.
- Zheng, K., Politis, D.J., Wang, L. & Lin, J. (2018). A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components. International Journal of Lightweight Materials and Manufacture. 1(2), 55-80. https://doi.org/10.1016/j.ijlmm.2018.03.006.
- Iswanto, P.T., Akhyar & Maliwemu, E.U.K. (2019). Fatigue crack growth rate of motorcycle wheel fabricated by centrifugal casting. Metalurgija. 58(1-2), 51-54.
- Iswanto, P.T., Akhyar & Pambekti, A. (2020). Heat treatment T4 and T6 effects on mechanical properties in Al-Cu alloy after remelt with different pouring temperatures. Metalurgija. 59(2), 171-174.
- Kaufman, J.G. (2005). Aluminum alloys. In Myer Kutz (Eds.), Materials and Mechanical Design (pp. 59-116). https://doi.org/10.1002/0471777447.
- Ndaliman, M.B. & Pius, A.P. (2007). Behavior of aluminum alloy castings under different pouring temperatures and speeds. Leonardo Electronic Journal of Practices and Technologies. 6(11), 71-80. ISSN (1583-1078).
- Jahangiri, A., Marashi, S.P.H., Mohammadaliha, M. & Ashofte, V. (2017). The effect of pressure and pouring temperature on the porosity, microstructure, hardness, and yield stress of AA2024 aluminum alloy during the squeeze casting process. Journal of Materials Processing Technology. 245, 1-6. https://doi.org/10.1016/j.jmatprotec.2017.02.005.
- Xiang, H., Liu, W., Wang, Q., Jiang, B., Song, J., Wu, H., Feng, N. & Chai, L. (2023). Improvement of hot tearing resistance of AZ91 alloy with the addition of trace Ca. Materials. 16(10), 3886, 1-16. https://doi.org/10.3390/ma16103886.
- Švec, M., Vodičková, V., Hanus, P., Pazourková Prokopčáková, P., Čamek, L. & Moravec, J. ( (2021). Effect of higher silicon content and heat treatment on structure evolution and high-temperature behaviour of Fe-28Al-15Si-2Mo alloy. Materials. 14(11), 3031, 1-12. https://doi.org/10.3390/ma14113031.
- Kasińska, J., Matejka, M., Bolibruchová, D., Kuriš, M., & Širanec, L. (2021). Effect of returnable material in batch on hot tearing tendency of AlSi9Cu3 alloy. Materials. 14(7), 1583, 1-15. https://doi.org/10.3390/ma14071583.
- Sun, Z., Tan, X., Wang, C., Descoins, M., Mangelinck, D., Tor, S. B., Jagle, E.A., Zaefferer, S. & Raabe, D. (2021). Reducing hot tearing by grain boundary segregation engineering in additive manufacturing: example of an AlxCoCrFeNi high-entropy alloy. Acta Materialia. 204, 116505, 1-14. https://doi.org/10.1016/j.actamat. 2020.116505.
- Liu, L., Mohamed, A. M. A., Samuel, A. M., Samuel, F. H., Doty, H. W. & Valtierra, S. (2009). Precipitation of β-Al5FeSi phase platelets in al-si based casting alloys. Metallurgical and Materials Transactions A. 40, 2457-2469. https://doi.org/10.1007/s11661-009-9944-8.
- Wang, X., Wood, J. V., Sui, Y., & Lu, H. (1998). Formation of intermetallic compound in iron-aluminum alloys. Journal of Shanghai University (English Edition). 2, 305-310. https://doi.org/10.1007/s11741-998-0045-5.
- Narayanan, L.A., Samuel, F.H. & Gruzleski, J.E. (1994). Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy. Metallurgical and Materials Transactions A. 25, 1761-1773. https://doi.org/10.1007/BF02668540.
- Razaz, G. & Carlberg, T. (2019). Hot tearing susceptibility of AA3000 aluminum alloy containing Cu, Ti, and Zr. Metallurgical and Materials Transactions A. 50, 3842-3854. https://doi.org/10.1007/s11661-019-05290-1.
- Li, M., Li, Y. & Zhou, H. (2020). Effects of pouring temperature on microstructure and mechanical properties of the A356 aluminum alloy diecastings. Materials Research. 23(1), 1-11. https://doi.org/10.1590/1980-5373-MR-2019-0676.
- Akhyar, H., Malau, V. & Iswanto, P.T. (2017). Hot tearing susceptibility of aluminum alloys using CRCM-Horizontal mold. Results in Physics. 7, 1030-1039. https://doi.org/10.1016/j.rinp.2017.02.041.
- Eskin, D.G., Suyitno & Katgerman, L. (2004). Mechanical properties in the semi-solid state and hot tearing of aluminum alloys. Progress in Materials Science. 49(5), 629-711. https://doi.org/10.1016/S0079-6425(03)00037-9.
- Katayama, S. (2001). Solidification phenomena of weld metals. Solidification cracking mechanism and cracking susceptibility (3rd report). Welding International. 15(8), 627-636. https://doi.org/10.1080/09507110109549415.
- Li, Y., Li, H., Katgerman, L., Du, Q., Zhang, J. & Zhuang, L. (2021). Recent advances in hot tearing during casting of aluminium alloys. Progress in Materials Science. 117, 100741, 1-77. https://doi.org/10.1016/j.pmatsci.2020.100741.
- Subroto, T., Miroux, A., Bouffier, L., Josserond, C., Salvo, L., Suéry, M., Eskin, D.G. & Katgerman, L. (2014). Formation of hot tear under controlled solidification conditions. Metallurgical and Materials Transactions A. 45, 2855-2862. https://doi.org/10.1007/s11661-014-2220-6.
- Akhyar, (2022). Hot tearing, parameters, and mould types for observation–review. Archives of Foundry Engineering. 22(2), 25-49. DOI: 10.24425/afe.2022.140223.
- Muojekwu, C.A., Samarasekera, I.V. & Brimacombe, J.K. (1995). Heat transfer and microstructure during the early stages of metal solidification. Metallurgical and materials transactions B. 26, 361-382. https://doi.org/10.1007/BF02660979.
- Matejka, M., Bolibruchová, D. & Kantoríková, E. (2024). Study of susceptibility to tearing of AlSi5Cu2Mg alloy with addition of Zr and Ti. Archives of Foundry Engineering. 24(1), 107-114. DOI: 10.24425/afe.2024.149257.
- Malau, V., Akhyar, & Iswanto, P.T. (2018). Modification of constrained rod casting mold for new hot tearing measurement. Archives of Metallurgy and Materials. 63(3), 1201-1208. DOI: 10.24425/123792.
- Wang, L., Makhlouf, M., Apelian, D. (1995). Aluminium die casting alloys: alloy composition, microstructure, and properties-performance relationships. International Materials Reviews. 40(6), 221-38. https://doi.org/10.1179/imr.1995.40.6.221