Szczegóły

Tytuł artykułu

Influence of Deformation Process Parameters on Changes in Microstructure and Properties of Mg-8Li-2Ca Alloy

Tytuł czasopisma

Archives of Foundry Engineering

Rocznik

2025

Wolumin

vol. 25

Numer

No 2

Autorzy

Afiliacje

Bednarczyk, I. : Silesian University of Technology, Department Materials Technology, Poland

Słowa kluczowe

Magnesium Mg-Li-Ca alloy ; KoBo method ; Microstructure ; Grain size

Wydział PAN

Nauki Techniczne

Zakres

81-88

Wydawca

The Katowice Branch of the Polish Academy of Sciences

Bibliografia

  • Yang, Z., Li, J.P., Zhang, J.X. & Lorimer, G.W. (2008). Review on research and development of magnesium alloys. Acta Metallurgica Sinica. 21(5), 313-328. DOI: 10.1016/S1006-7191(08)60054-X.
  • Wang, T., Zhang M-L. & Wu R-Z. (2007). Microstructure and mechanical properties of Mg-5.6Li-3.37Al-1.68Zn-1.14Ce alloy. Transactions of NouFerrous Metals Society of China. 17, 444-447.
  • Bednarczyk, I. (2023). The Influence of the casting process on shaping the primary structure of Mg-Li alloys. Archives of Foundry Engineering. 23(4), 137-144, DOI:10.24425/afe.2023.146688.
  • Bednarczyk, I. & Kuc, D. (2022). The influence of the deformation method on the microstructure and properties of magnesium alloy Mg-Y-RE-Zr. 15(6), 1-15. DOI:10.3390/ma15062017.
  • Yang H.P., Fu M.W., Wang G.C S. (2016). Investigation on the maximum strain rate sensitivity (m) superplastic deformation of Mg-Li based alloy. Materials & Design. 112, 151-159. DOI: 10.1016/j.matdes.2016.09.066.
  • Bajor, T., Muskalski, Z. & Suliga, M. (2010). Research on the drawing process with a large total deformation wires of AZ31 alloy. Journal of Physics, Conference Series. 240, 012107, 1-5. DOI: 012107.10.1088/1742-6596/240/1/012107.
  • Stefanik, A., Szota, P., Mróz, S., Bajor, T. & Dyja, H. (2015). Properties of the AZ31 magnesium alloy round bars obtained in different rolling processes. Archives of Metallurgy and Materials. 60(4), 3001-3005. DOI:10.1515/amm-2015-0479.
  • Bohlen, J., Guadalupe, C., Drozdenko, D., Dobron, P., Ulrich Kainer, K., Gall, S., Müller, S. & Letzig, D. (2018). Processing effects on the formability of magnesium alloy sheets. Metals. 8(2), 147, 1-15. DOI:10.3390/met8020147.
  • Dutkiewicz, J., Kalita, D, Maziarz, W. & Faryna, M. (2020). Superplastic deformation of Mg–9Li–2Al–0.5Sc alloy after grain refinement by KoBo extrusion and cyclic forging. Archives of Civil and Mechanical Engineering. 20(4), 121, 1-11. DOI: 10.1007/s43452-020-00128-9.
  • Furui, M., Xu, C., Aida, T., Inoue, M., Anada, H., & Langdon, T. G. (2005). Improving the superplastic properties of a two-phase Mg–8%Li alloy through processing by ECAP. Materials Science and Engineering A. 410-411, 439-442. DOI:10.1016/j.msea.2005.08.143.
  • Dutkiewicz, J., Bobrowski, P., Rusz, S., Ondrej, H., Tański, T., Borek, W., Łagoda, M., Ostachowski, P., Pałka, P., Boczkal, G., Kuc, D. & Mikuszewski, T. (2018). Effect of various SPD techniques on structure and superplastic deformation of two phase MgLiAl alloy. Metals and Materials International. 24, 1077-1089. DOI: 10.1007/s12540-018-0118-3.
  • Song, G.S. & Kral, M.V. (2005). Characterization of cast Mg–Li–Ca alloys. Materials Characterization. 54(4-5), 279-286. DOI: 10.1016/j.matchar.2004.12.001.
  • Al-Samman, T. (2009). Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy. Acta Materialia. 57(7), 2229-2242. DOI:10.1016/j.actamat.2009.01.031.
  • Wang, T., Zhang, M. & Wu, R. (2008). Microstructure and properties of Mg–8Li–1Al–1C alloy. Materials Letters. 62(12-13), 1846-1848. DOI: 10.1016/j.matlet.2007.10.017.
  • Myshlyaev, M.M., McQueen, H.J. & Konopleva, E. (1997). Microstructural development in Mg alloy AZ31 during hot working. Scripta Materialia. 37(11), 1789-1795. DOI: 10.1016/S1359-6462(97)00344-8.
  • Chang, T., Wang, J., Chu, Ch. & Lee, S. (2006). Mechanical properties and microstructures of various Mg–Li alloys. Materials Letters. 60(2), 3272-3276. DOI: 10.1016/j.matlet.2006.03.052.
  • Furui, M., Kitamura, H., Anada, H. & Langdon, T. G. (2007). Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP. Acta Materialia. 55(3), 1083-1091. DOI:10.1016/j.actamat.2006.09.027.
  • Abdullaev, R.N., Samoshkin, D.A., Agazhanov, A.Sh. & Stankus S.V. (2021). Heat capacity of pure magnesium and ultralight congruent magnesium–lithium alloy in the temperature range of 300 K to 825 K. Journal of Engineering Thermophysics. 30(2), 207-212. DOI: 10.1134/S1810232821020041.
  • Balawender, T., Zwolak, M. & Bąk, Ł (2020). Experimental analysis of mechanical characteristics of KoBo extrusion method. Archives of Metallurgy and Materials. 65(2), 615-619. DOI: 10.24425/amm.2020.132800.
  • Bochniak, W., Korbel, A., Ostachowski, P. & Łagoda, M. (2018). Plastic flow of metals under cyclic change of deformation path conditions. Archives of Civil and Mechanical Engineering. 18, 679-686. https://doi.org/10.1016/j.acme.2017.11.004.
  • Chuanqiang Li., Yibin He. & Huaipei Huang. (2021). Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg–Li alloys. Journal of Magnesium and Alloys. 9(2), 569-580. https://doi.org/10.1016/j.jma.2020.02.022.
  • Szala, J. (2000). Application of computer picture analysis methods to quantitative assessment of structure in materials. Scientific Journals of Silesian University of Technology, Series Metallurgy. 1518, 167 (in Polish)

 

Data

13.06.2025

Typ

Article

Identyfikator

DOI: 10.24425/afe.2025.153799 ; eISSN 2299-2944
×