Szczegóły
Tytuł artykułu
Influence of Deformation Process Parameters on Changes in Microstructure and Properties of Mg-8Li-2Ca AlloyTytuł czasopisma
Archives of Foundry EngineeringRocznik
2025Wolumin
vol. 25Numer
No 2Autorzy
Afiliacje
Bednarczyk, I. : Silesian University of Technology, Department Materials Technology, PolandSłowa kluczowe
Magnesium Mg-Li-Ca alloy ; KoBo method ; Microstructure ; Grain sizeWydział PAN
Nauki TechniczneZakres
81-88Wydawca
The Katowice Branch of the Polish Academy of SciencesBibliografia
- Yang, Z., Li, J.P., Zhang, J.X. & Lorimer, G.W. (2008). Review on research and development of magnesium alloys. Acta Metallurgica Sinica. 21(5), 313-328. DOI: 10.1016/S1006-7191(08)60054-X.
- Wang, T., Zhang M-L. & Wu R-Z. (2007). Microstructure and mechanical properties of Mg-5.6Li-3.37Al-1.68Zn-1.14Ce alloy. Transactions of NouFerrous Metals Society of China. 17, 444-447.
- Bednarczyk, I. (2023). The Influence of the casting process on shaping the primary structure of Mg-Li alloys. Archives of Foundry Engineering. 23(4), 137-144, DOI:10.24425/afe.2023.146688.
- Bednarczyk, I. & Kuc, D. (2022). The influence of the deformation method on the microstructure and properties of magnesium alloy Mg-Y-RE-Zr. 15(6), 1-15. DOI:10.3390/ma15062017.
- Yang H.P., Fu M.W., Wang G.C S. (2016). Investigation on the maximum strain rate sensitivity (m) superplastic deformation of Mg-Li based alloy. Materials & Design. 112, 151-159. DOI: 10.1016/j.matdes.2016.09.066.
- Bajor, T., Muskalski, Z. & Suliga, M. (2010). Research on the drawing process with a large total deformation wires of AZ31 alloy. Journal of Physics, Conference Series. 240, 012107, 1-5. DOI: 012107.10.1088/1742-6596/240/1/012107.
- Stefanik, A., Szota, P., Mróz, S., Bajor, T. & Dyja, H. (2015). Properties of the AZ31 magnesium alloy round bars obtained in different rolling processes. Archives of Metallurgy and Materials. 60(4), 3001-3005. DOI:10.1515/amm-2015-0479.
- Bohlen, J., Guadalupe, C., Drozdenko, D., Dobron, P., Ulrich Kainer, K., Gall, S., Müller, S. & Letzig, D. (2018). Processing effects on the formability of magnesium alloy sheets. Metals. 8(2), 147, 1-15. DOI:10.3390/met8020147.
- Dutkiewicz, J., Kalita, D, Maziarz, W. & Faryna, M. (2020). Superplastic deformation of Mg–9Li–2Al–0.5Sc alloy after grain refinement by KoBo extrusion and cyclic forging. Archives of Civil and Mechanical Engineering. 20(4), 121, 1-11. DOI: 10.1007/s43452-020-00128-9.
- Furui, M., Xu, C., Aida, T., Inoue, M., Anada, H., & Langdon, T. G. (2005). Improving the superplastic properties of a two-phase Mg–8%Li alloy through processing by ECAP. Materials Science and Engineering A. 410-411, 439-442. DOI:10.1016/j.msea.2005.08.143.
- Dutkiewicz, J., Bobrowski, P., Rusz, S., Ondrej, H., Tański, T., Borek, W., Łagoda, M., Ostachowski, P., Pałka, P., Boczkal, G., Kuc, D. & Mikuszewski, T. (2018). Effect of various SPD techniques on structure and superplastic deformation of two phase MgLiAl alloy. Metals and Materials International. 24, 1077-1089. DOI: 10.1007/s12540-018-0118-3.
- Song, G.S. & Kral, M.V. (2005). Characterization of cast Mg–Li–Ca alloys. Materials Characterization. 54(4-5), 279-286. DOI: 10.1016/j.matchar.2004.12.001.
- Al-Samman, T. (2009). Comparative study of the deformation behavior of hexagonal magnesium–lithium alloys and a conventional magnesium AZ31 alloy. Acta Materialia. 57(7), 2229-2242. DOI:10.1016/j.actamat.2009.01.031.
- Wang, T., Zhang, M. & Wu, R. (2008). Microstructure and properties of Mg–8Li–1Al–1C alloy. Materials Letters. 62(12-13), 1846-1848. DOI: 10.1016/j.matlet.2007.10.017.
- Myshlyaev, M.M., McQueen, H.J. & Konopleva, E. (1997). Microstructural development in Mg alloy AZ31 during hot working. Scripta Materialia. 37(11), 1789-1795. DOI: 10.1016/S1359-6462(97)00344-8.
- Chang, T., Wang, J., Chu, Ch. & Lee, S. (2006). Mechanical properties and microstructures of various Mg–Li alloys. Materials Letters. 60(2), 3272-3276. DOI: 10.1016/j.matlet.2006.03.052.
- Furui, M., Kitamura, H., Anada, H. & Langdon, T. G. (2007). Influence of preliminary extrusion conditions on the superplastic properties of a magnesium alloy processed by ECAP. Acta Materialia. 55(3), 1083-1091. DOI:10.1016/j.actamat.2006.09.027.
- Abdullaev, R.N., Samoshkin, D.A., Agazhanov, A.Sh. & Stankus S.V. (2021). Heat capacity of pure magnesium and ultralight congruent magnesium–lithium alloy in the temperature range of 300 K to 825 K. Journal of Engineering Thermophysics. 30(2), 207-212. DOI: 10.1134/S1810232821020041.
- Balawender, T., Zwolak, M. & Bąk, Ł (2020). Experimental analysis of mechanical characteristics of KoBo extrusion method. Archives of Metallurgy and Materials. 65(2), 615-619. DOI: 10.24425/amm.2020.132800.
- Bochniak, W., Korbel, A., Ostachowski, P. & Łagoda, M. (2018). Plastic flow of metals under cyclic change of deformation path conditions. Archives of Civil and Mechanical Engineering. 18, 679-686. https://doi.org/10.1016/j.acme.2017.11.004.
- Chuanqiang Li., Yibin He. & Huaipei Huang. (2021). Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg–Li alloys. Journal of Magnesium and Alloys. 9(2), 569-580. https://doi.org/10.1016/j.jma.2020.02.022.
- Szala, J. (2000). Application of computer picture analysis methods to quantitative assessment of structure in materials. Scientific Journals of Silesian University of Technology, Series Metallurgy. 1518, 167 (in Polish)