Details

Title

Simulation of the Effect of Impurities in Recycled Silicon Used for the for the Production of Ferrosilicon

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

vol. 25

Issue

No 2

Authors

Affiliation

Padhamnath, P. : AGH University of Krakow, Poland ; Migas, P. : AGH University of Krakow, Poland ; Karbowniczek, M. : AGH University of Krakow, Poland

Keywords

Ferrosilicon ; Recycling ; Decarbonization ; E-waste ; FactSage

Divisions of PAS

Nauki Techniczne

Coverage

137-156

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  • Riva, L., Surup, G.R. Buø, T.V. & Nielsen, H.K. (2019). A study of densified biochar as carbon source in the silicon and ferrosilicon production. Energy. 181, 985-996. https://doi.org/10.1016/j.energy.2019.06.013.
  • Tangstad, M., Beukes, J.P., Steenkamp, J. & Ringdalen, E. (2019) Coal-based reducing agents in ferroalloys and silicon production. New Trends in Coal Conversion. 405-438. https://doi.org//10.1016/B978-0-08-102201-6.00014-5.
  • Ismail, A.N., Ibrahim, M.H., Said, R.M., Somidin, F., & Ismail, S.A. (2022) Influence of recycled wastes on ferrosilicon production in steel making applications: A short review. Journal of Physics: Conference Series. 012028, 1-5. https://doi.org/10.1088/1742-6596/2169/1/012028.
  • Tangstad, M. (2013) Ferrosilicon and silicon technology. Handbook of Ferroalloys. 179-220. https://doi.org/10.1016/B978-0-08-097753-9.00006-X.
  • Farzana, R. & Sahajwalla, V. (2015). Novel recycling to transform automotive waste glass and plastics into SiC-bearing resource by silica reduction. Journal of Sustainable Metallurgy. 1 65-74. https://doi.org/10.1007/s40831-014-0004-2.
  • Farzana, R., Rajarao, R. & Sahajwalla, V. (2014). Transforming waste plastic into reductants for synthesis of ferrosilicon alloy. Industrial & Engineering Chemistry Research. 53(51), 19870-19877. https://doi.org/10.1021/ie5041513.
  • Farzana, R., Rajarao, R. & Sahajwalla, V. (2013). Synthesis of ferrosilicon alloy using waste glass and plastic. Materials Letters. 116, 101-103. https://doi.org/10.1016/j.matlet.2013.10.105.
  • Farzana, R. Rajarao, R. & Sahajwalla, V. (2016). Characteristics of waste automotive glasses as silica resource in ferrosilicon synthesis. Waste Management & Research. 34(2), 113-121. https://doi.org/10.1177/0734242X15617010.
  • Farzana, R., Rajarao, R. & Sahajwalla, V. (2017). Reaction mechanism of ferrosilicon synthesis using waste plastic as a reductant. ISIJ International. 57(10),  1780-1787. https://doi.org/10.2355/isijinternational.ISIJINT-2017-199.
  • Rajarao, R., Farzana, R. & Sahajwalla, V. (2018). Transforming waste printed circuit boards and compact discs for the synthesis of valuable ferrosilicon alloy. Journal of Sustainable Metallurgy. 4  4610-469. https://doi.org/10.1007/s40831-018-0194-0.
  • Kuz’min, M.P., Chu, P.K., Qasim, A.M., Larionov, L.M., Kuz’mina, M.Y. & Kuz’min, P.B. (2019). Obtaining of Al–Si foundry alloys using amorphous microsilica–Crystalline silicon production waste. Journal of Alloys and Compounds. 806, 806-813. https://doi.org/10.1016/j.jallcom.2019.07.312.
  • Blaesing, L., Walnsch, A., Hippmann, S., Modrzynski, C., Weidlich, C., Pavón, S. & Bertau, M. (2024). Ferrosilicon production from silicon wafer breakage and red mud. ACS Sustainable Resource Management. 1, 404-416. https://doi.org/10.1021/acssusresmgt.3c00035.
  • Ardente, F., Latunussa, C.E.L. & Blengini, G.A. (2019). Resource efficient recovery of critical and precious metals from waste silicon PV panel recycling. Waste Management. 91, 156-167. https://doi.org/10.1016/j.wasman.2019.04.059.
  • Wang, X., Tian, X., Chen, X., Ren, L. & Geng, C. (2022). A review of end-of-life crystalline silicon solar photovoltaic panel recycling technology. Solar Energy Materials and Solar Cells. 248, 111976, 1-12. https://doi.org/10.1016/j.solmat.2022.111976.
  • Cui, J. & Zhang, L. (2008). Metallurgical recovery of metals from electronic waste: A review. Journal of Hazardous Materials. 158(2-3), 228-256. https://doi.org/10.1016/j.jhazmat.2008.02.001.
  • Latunussa, C., Mancini, L., Blengini, G., Ardente, F. & Pennington, D. (2016). Analysis of material recovery from silicon photovoltaic panels. JRC Publications Repository. JRC100783. https://doi.org/10.2788/786252.
  • Padhamnath, P., Buatis, J.K., Khanna, A., Nampalli, N., Nandakumar, N., Shanmugam, V., Aberle, A.G. & Duttagupta, S. (2020). Characterization of screen printed and fire-through contacts on LPCVD based passivating contacts in monoPolyTM solar cells. Solar Energy. 202, 73-79. https://doi.org/10.1016/j.solener.2020.03.087.
  • Gupta, S.P. (2002). Intermetallic compound formation in Fe–Al–Si ternary system: Part I. Materials Characterization. 49(4), 269-291. https://doi.org/10.1016/S1044-5803(03)00006-8.
  • Liu, Z.-K. & Chang, Y.A. (1999). Thermodynamic assessment of the Al-Fe-Si system. Metallurgical and Materials Transactions A. 30, 1081-1095. https://doi.org/10.1007/s11661-999-0160-3.
  • Fukaya, M., Miyazaki, T. & Kozakai, T. (1991). Phase diagrams calculated for Fe-rich Fe-Si-Co and Fe-Si-Al ordering alloy systems. Journal of Materials Science. 26, 5420-5426. https://doi.org/10.1007/BF02403939.
  • Akberdin, A.A., Kim, A.S., Orlov, A.S. & Sultangaziev, R.B. (2022). Diagram of the phase composition of the Fe–Si–Al system and its isothermal sections. CIS Iron Steel Rev. 23, 76-80.
  • Nová, K., Novák, P., Průša, F., Kopeček, J. & Čech, J. (2018). Synthesis of intermetallics in Fe-Al-Si system by mechanical alloying. Metals. 9(1), 20, 1-14. https://doi.org/10.3390/met9010020.
  • Tsakadze, Z., Tan, L.P., Davidson, K.P., Gorsse, S,. Chaudhary, V. & Ramanujan, R. V. (2024). Accelerated multi-property discovery of promising Fe-Si-Al magnetic alloys. Materialia. 36, 102168, 1-13. https://doi.org/10.1016/j.mtla.2024.102168.
  • Zhang, C., Chen, Y., Feng, S., Kan, X., Zhu, Y., Li, Y., Sun, W., Shen, J. & Liu, X. (2023). Improvement of electromagnetic properties of FeSiAl soft magnetic composites. Journal of Materials Science. 58, 9698-9707. https://doi.org/10.1007/s10853-023-08610-4.
  • Zuo, B., Saraswati, N., Sritharan, T. & Hng, H.H. (2004). Production and annealing of nanocrystalline Fe–Si and Fe–Si–Al alloy powders. Materials Science and Engineering: A. 371(1-2), 210-216. https://doi.org/10.1016/j.msea.2003.11.046.
  • Wakiyama, T., Takahashi, M.,  Nishimaki, S. & Shimoda, J. (1981). Magnetic properties of Fe-Si-Al single crystals. IEEE Transactions on Magnetics. 17(6), 3147-3150. https://doi.org/10.1109/TMAG.1981.1061694.
  • Shabestari, S.G. (1994) Formation of iron-bearing intermetallics in aluminum-silicon casting alloys. Canada: McGill University, Montreal, Quebec.
  • Li, X. & Li, Z. (2017) Experimental investigation of the 650° C isothermal section of the Cu-Fe-Si ternary phase diagram. Journal of Phase Equilibria and Diffusion. 38,  94-101. https://doi.org/10.1007/s11669-017-0519-x.
  • Heuer, M., Buonassisi, T., Istratov, A.A., Pickett, M.D., Marcus, M.A., Minor, A.M. & Weber E.R. (2007). Transition metal interaction and Ni-Fe-Cu-Si phases in silicon. Journal of Applied Physics. 101, 123510. https://doi.org/10.1063/1.2748346.
  • Wu, P.H., Liu, N. & Zhu, Z.X. (2015). Liquid-phase separation of undercooled Fe-Cu-Si alloy. Advanced Materials Research. 1095, 160-163. https://doi.org/10.4028/www.scientific.net/amr.1095.160.
  • Yamauchi, I., Irie, T. & Sakaguchi, H. (2005). Metastable liquid separation in undercooled Fe–Cu and Fe–Cu–Si melts containing a small B concentration and their solidification structure. Journal of Alloys and Compounds. 403(1-2), 211-216. https://doi.org/10.1016/j.jallcom.2005.05.031.
  • Yamauchi, I., Okamoto, H., Suganuma, A. & Ohnaka, I. (1998). Effects of Cu addition on the β-phase formation rate in Fe2Si5 thermoelectric materials. Journal of Materials Science. 33, 385-394. https://doi.org/10.1023/A:1004323930521.
  • Kataoka, T., Arita, Y., Takahashi, F., Fujimura, H., Kurosaki, Y., Sugiyama, M. & Ohnuma, I. (2016). Precipitation behavior of copper sulfides in Fe–Si–Cu–S ferritic steel. ISIJ International. 56(11), 2062-2067. https://doi.org/10.2355/isijinternational.ISIJINT-2016-056.
  • Wang, X., Zhou, B., Guo, Z., Liu, Y., Wang, J. & Su, X. (2017). Experimental investigation and thermodynamic calculation of the Fe–Si–Sn system, Calphad. 57,  88–97. https://doi.org/10.1016/j.calphad.2017.03.006.
  • Liu, Y., Yin, F., Hu, J., Zhi, L.I. & Cheng, S. (2018). Phase equilibria of Al–Fe–Sn ternary system, Transactions of Nonferrous Metals Society of China. 28(2), 282-289. https://doi.org/10.1016/S1003-6326(18)64661-8.
  • Li, J.G., Yuan, W.J., Zhou, Y. & Zhang, L.M. (2008). Effect of Sn on the sintering of Fe-Si alloys. Key Engineering Materials. 368-372, 1591-1592. https://doi.org/10.4028/www.scientific.net/KEM.368-372.1591.
  • Wołczyński, W. (2020). Pattern selection in the eutectic growth-thermodynamic interpretation. Archives of Metallurgy and Materials. 65, 653-666. https://doi.org/10.24425/amm.2020.132804.
  • Yang, C., Tan, Q., Liu, L., Dong, Q. & Li, J. (2017). Recycling tin from electronic waste: a problem that needs more attention. ACS Sustainable Chemistry & Engineering. 5(11), 9586-9598. https://doi.org/10.1021/acssuschemeng.7b02903.
  • Sapinov, R.V., Sadenova, M.A., Kulenova, N.A. & Oleinikova, N.V. (2020). Improving hydrometallurgical methods for processing tin-containing electronic waste. CET Journal-Chemical Engineering Transactions. 81, 1021-1026. https://doi.org/10.3303/CET2081171.
  • Barragan, J.A., Ponce de León, C., Alemán Castro, J.R., Peregrina-Lucano, A., Gómez-Zamudio, F. & Larios-Durán, E.R. (2020). Copper and antimony recovery from electronic waste by hydrometallurgical and electrochemical techniques. ACS Omega. 5(21), 12355-12363. https://doi.org/10.1021/acsomega.0c01100.
  • Jadhao, P., Chauhan, G., Pant, K.K. & Nigam, K.D.P. (2016). Greener approach for the extraction of copper metal from electronic waste. Waste Management. 57, 102-112. https://doi.org/10.1016/j.wasman.2015.11.023.
  • Sinha, R., Chauhan, G., Singh, A., Kumar, A. & Acharya, S. (2018). A novel eco-friendly hybrid approach for recovery and reuse of copper from electronic waste. Journal of Environmental Chemical Engineering. 6(1), 1053-1061. https://doi.org/10.1016/j.jece.2018.01.030.
  • Padhamnath, P., Ślęzak, M. & Karbowniczek, M. (2023). Disposing end of life PV modules – reusing, recycling and upcycling. In EU PVSEC 2023, EUPVSEC, (pp. 001–008). Lisbon, Portugal. https://doi.org/10.4229/EUPVSEC2023/5DV.2.62.
  • Pahari, A.K. & Dubey, B.K.  (2019) Waste from electrical and electronics equipment. Plastics to Energy 443-468. https://doi.org/10.1016/B978-0-12-813140-4.00018-2.
  • Littmann, M. (1971). Iron and silicon-iron alloys. IEEE Transactions on Magnetics. 7(1), 48-60. https://doi.org/10.1109/TMAG.1971.1066998.
  • Sigfússon, T.I. Helgason, Ö. (1990). Rates of transformations in the ferrosilicon system. Hyperfine Interactions. 54, 861-867. https://doi.org/10.1007/BF02396141.
  • Gilbert, A. & Owen, W.S. (1962). Diffusionless transformation in iron-nickel, iron-chromium and iron-silicon alloys. Acta Metallurgica. 10(1), 45-54. https://doi.org/10.1016/0001-6160(62)90185-2.
  • Hom, Q.C., Nassaralla, C.L. & Heckel, R.W (1998). Microstructural study of granulated ferrosilicon with 75wt% silicon. The Proceedings of ·INFACON. 8, 126-132. https://www.pyrometallurgy.co.za/InfaconVIII/126-Horn.pdf (accessed January 18, 2025).
  • Tomé-Torquemada, S., Glaser, B., Hildal, K. & Sichen, D. (2017). Experimental study on the activities of Al and Ca in ferrosilicon. Metallurgical and Materials Transactions B. 48, 3251-3258. https://doi.org/10.1007/s11663-017-1119-1.
  • Krause, O., Ryssel, H. & Pichler, P. (2002). Determination of aluminum diffusion parameters in silicon. Journal of Applied Physics. 91, 5645-5649. https://doi.org/10.1063/1.1465501.
  • Kim, Y.-M., Choi, S.-W. & Hong, S.-K. (2016). The behavior of thermal diffusivity change according to the heat treatment in Al-Si binary system. Journal of Alloys and Compounds. 687, 54-58. https://doi.org/10.1016/j.jallcom.2016.06.080.
  • McCaldin, J.O. & Sankur, H. (1971). Diffusivity and solubility of Si in the Al metallization of integrated circuits. Applied Physics Letters. 19, 524-527. https://doi.org/10.1063/1.1653799.
  • Blatt, F.J. (1955). Effect of point imperfections on the electrical properties of copper. I. Conductivity. Physical Review Journals Archive. 99, 1708. https://doi.org/10.1103/PhysRev.99.1708.
  • Murarka, S.P. (2001). Materials aspects of copper interconnection technology for semiconductor applications. Materials Science and Technology. 17(7), 749-758. https://doi.org/10.1179/026708301101510564.
  • Lennon, A., Colwell, J. & Rodbell, K.P. (2019). Challenges facing copper‐plated metallisation for silicon photovoltaics: Insights from integrated circuit technology development. Progress in Photovoltaics: Research and Applications. 27(1), 67-97. https://doi.org/10.1002/pip.3062.
  • Mondon, A., Jawaid, M.N., Bartsch, J., Glatthaar, M. & Glunz, S.W. (2013). Microstructure analysis of the interface situation and adhesion of thermally formed nickel silicide for plated nickel–copper contacts on silicon solar cells. Solar Energy Materials and Solar Cells. 117, 209-213. https://doi.org/10.1016/j.solmat.2013.06.005.
  • Kraft, A., Wolf, C., Bartsch, J., Glatthaar, M. & Glunz, S. (2015). Long term stability of copper front side contacts for crystalline silicon solar cells. Solar Energy Materials and Solar Cells. 136, 25-31. https://doi.org/https://doi.org/10.1016/j.solmat.2014.12.024.
  • Istratov, A.A. & Weber, E.R. (2002). Physics of Copper in Silicon. Journal of Electrochemical Society. 149(1),  G21-G30. https://doi.org/10.1149/1.1421348.
  • Istratov, A.A., Flink, C., Hieslmair, H., McHugo, S.A. & Weber, E.R. (2000). Diffusion, solubility and gettering of copper in silicon. Materials Science and Engineering: B. 72(2-3), 99-104. https://doi.org/https://doi.org/10.1016/S0921-5107(99)00514-0.
  • Joshi, K., Padhamnath, P.,  Bhandarkar, U. & Joshi, S.S. (2019). Surface quality and contamination on Si wafer surfaces sliced using wire-electrical discharge machining. Journal of Engineering Materials and Technology. 141(4),  041013. https://doi.org/10.1115/1.4044374.
  • Haccuria, E., Ning, P., Cao, H., Venkatesan, P., Jin, W., Yang, Y. & Sun, Z. (2017) Effective treatment for electronic waste-Selective recovery of copper by combining electrochemical dissolution and deposition. Journal of Cleaner Production. 152, 150-156. https://doi.org/10.1016/j.jclepro.2017.03.112.
  • Salje, G. & Feller‐Kniepmeier, M. (1977). The diffusion and solubility of copper in iron. Journal of Applied Physics. 48, 1833-1839. https://doi.org/10.1063/1.323934.
  • Salje, G. & Feller‐Kniepmeier, M. (1978). The diffusion and solubility of iron in copper. Journal of Applied Physics. 49,  229-232. https://doi.org/10.1063/1.324336
  • Olesinski, R.W. & Abbaschian, G.J. (1984). The Si− Sn (silicon− tin) system. Bulletin of Alloy Phase Diagrams. 5, 273-276. https://doi.org/10.1007/BF02868552.
  • Ehret, W.F. & Westgren, A.F. (1933). X-ray analysis of iron-tin alloys. Journal of the American Chemical Society. 55(4), 1339-1351.
  • Wołczyński, W. (2015). Back-diffusion in crystal growth. Eutectics. Archives of Metallurgy and Materials. 60(3), 2403-2407. https://doi.org/10.1515/amm-2015-0392.
  • W. Wołczyński, (2015). Back-diffusion in crystal growth. Peritectics. Archives of Metallurgy and Materials. 60(3), 2409-2414. DOI: 10.1515/amm-2015-0393.

Date

27.06.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.153805
×