Details

Title

Analysis of the Possibility of Using Selected Artificial Intelligence Algorithms for the Assessment of the Microstructure of Vermicular Cast Iron

Journal title

Archives of Foundry Engineering

Yearbook

2025

Volume

vol. 25

Issue

No 2

Authors

Affiliation

Janiszewska, U. : AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Poland ; Marcjan, Ł. : AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Poland ; Gajoch, S. : AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Poland ; Jaśkowiec, K. : Łukasiewicz Research Network-Krakow Institute of Technology, Poland ; Bitka, A. : Łukasiewicz Research Network-Krakow Institute of Technology, Poland ; Małysza, M. : AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Poland ; Wilk-Kołodziejczyk, D. : AGH University of Krakow, Faculty of Metals Engineering and Industrial Computer Science, Poland ; Wilk-Kołodziejczyk, D. : Łukasiewicz Research Network-Krakow Institute of Technology, Poland

Keywords

Microstructure images ; Vermicular cast iron ; Artificial intelligence HOG algorithm

Divisions of PAS

Nauki Techniczne

Coverage

173-182

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  • Kosa, E. (2012). Research on the structure of nitrided layers produced on EN-GJL 250 cast iron under glow discharge conditions. Engineering diploma thesis, Warsaw University of Technology, Faculty of Materials Engineering. (in Polish).
  • Szpak, Ł. (2014). Image classification based on the author's hypsometric representation. Master's thesis, Warsaw University of Technology, Faculty of Electronics and Information Technology, Institute of Computer Science. (in Polish).
  • de Albuquerque, V.H.C., Cortez, P.C., de Alexandria, A.R. & Manuel, J.R.S. (2008). A new solution for automatic microstructures analysis from images based on a backpropagation artificial neural network. Nondestructive Testing and Evaluation. 23(94), 273-283. https://doi.org/10.1080/10589750802258986.
  • Han, Y., Lai, C., Wang, B. & Gu, H. (2019). Segmenting images with complex textures by using hybrid algorithm. Journal of Electronic Imaging. 28(1), 013030. DOI: 10.1117/1.JEI.28.1.013030.
  • Fotos, G., Campbell, A., Murray, P. & Yakushina, E. (2023). Deep learning enhanced Watershed for microstructural analysis using a boundary class semantic segmentation. Journal of Materials Science. 58(36), 14390-14410. https://doi.org/10.1007/s10853-023-08901-w.
  • Azlan Suhaimi, M., Park, K.H., Sharif, S., Kim, D.W. Saladin Mohruni, A. (2017). Evaluation of cutting force and surface roughness in high-speed milling of compacted graphite iron. In MATEC Web of Conferences, 7-9 June 2017 (pp. 1-7). DOI: 10.1051/MATECCONF/201710103016.
  • Zhu, C. & Zhang, A. (2007). Experimental study on fracture toughness of vermicular cast iron. Journal of Mechanical Strength. 29(2), 310-314.
  • Guzik, P. (2014). Methods of searching for characteristic points and their features. Engineering diploma thesis, Warsaw University of Technology Faculty of Electronics and Information Technology Institute of Computer Science. (in Polish).
  • Nowik, A. (2014). Local descriptors using reduced binary histogram in similar image retrieval. Warsaw University of Technology, Faculty of Electronics and Information Technology Institute of Computer Science. (in Polish).
  • Function Documentation. (2023). Color Space Conversions. Retrieved November 25, 2023, from https://docs.opencv.org/3.4/d8/d01/group__imgproc__colo r__conversions.html#ga397ae87e1288a81d2363b61574eb 8cab
  • Color conversions. (2023) Retrieved November 23, 2023, from https://docs.opencv.org/3.4/de/d25/imgproc_color_conversions.html
  • Smotking Images: Gaussian Blurring. (2023). Retrieved November 23, 2023, from, https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html
  • Morphological Transformations: Closing. (2023). Retrieved November 23, 2023, from https://docs.opencv.org/4.x/d9/d61/tutorial_py_morphological_ops.html
  • Structural Analysis and ShapeDescriptors: findContours. (2023). Retrieved November 23, 2023, from, https://docs.opencv.org/3.4/d3/dc0/group__imgproc__shape.html#ga17ed9f5d79ae97bd4c7cf18403e1689a
  • Arithmetic Operations on Images: Bitwise Operations. (2023). Retrieved November 23, 2023, from, https://docs.opencv.org/3.4/d0/d86/tutorial_py_image_arithmetics.html
  • Image Thresholding: Otsu's Binarization. (2023). Retrieved November 23, 2023, from, https://docs.opencv.org/3.4/d7/d4d/tutorial_py_thresholding.html
  • About Keras: Keras & TensorFlow 2. (2023). Retrieved November 26, 2023, from https://keras.io/about/tf.keras.preprocessing.image.ImageDataGenerator, Retrieved 2023-11-26, https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator#used-in-the-notebooks
  • fchollet, The Sequential model. (2023). Retrieved November 26, 2023, from https://keras.io/guides/sequential_model/
  • Conv2D layer. (2023). Retrieved November 26, 2023, from https://keras.io/api/layers/convolution_layers/convolution2d/
  • MaxPooling2D layer. (2023). Retrieved November 23, 2023, from https://keras.io/api/layers/pooling_layers/max_pooling2d/
  • Flatten layer. (2023). Retrieved November 27, 2023, from https://keras.io/api/layers/reshaping_layers/flatten/
  • Dense layer. (2023). Retrieved November 27, 2023, from https://keras.io/api/layers/core_layers/dense/
  • Layer activation functions. (2023). Retrieved November 26, 2023, from, https://keras.io/api/layers/activations/#sigmoid-function
  • (2023). Retrieved November 26, 2023, from https://keras.io/api/optimizers/adam/

Date

27.06.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.153807
×