Details
Title
Green and sustainable separation of metal ions and synthetic dyes from aqueous solutions using deep eutectic solvents. A mini reviewJournal title
Archives of Environmental ProtectionYearbook
2025Volume
51Issue
2Authors
Affiliation
Kaczorowska, Małgorzata A. : Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland ; Bożejewicz, Daria : Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, PolandKeywords
solvent extraction; ; metal ions; ; sustainability; ; synthetic dyes; ; membrane separation; ; deep eutectic solvents;Divisions of PAS
Nauki TechniczneCoverage
24-33Publisher
Polish Academy of SciencesBibliography
- Abdussalam-Mohammed, W., Ali, A. Q. & Errayes, A. O. (2020). Green Chemistry: principles, applications, and disadvantages. Chemical Methodologies, 4(4), pp. 408-423. DOI:10.33945/SAMI/CHEMM.2020.4.4
- Abedpour, H., Moghaddas, J. S., Borhani, M. N. & Borhani, T. N. (2023). Separation of toxic contaminants from water by silica aerogel-based adsorbents: A comprehensive review. Journal of Water Process Engineering, 53, 103676. DOI:10.1016/j.jwpe.2023.103676
- Albrektienė-Plačakė, R. & Paliulis, D. (2024) Investigation on applying sapropel for removal of heavy metals (cadmium, chromium, copper, and zinc) from aqueous solutions. Archives of Environmental Protection, 50, 2, pp. 55-64. DOI:10.24425/aep.2024.150552
- Alguacil, F. J. & Robla, J. I. (2022). Solvent extraction in the recovery of metals from solutions: entering the third decade of XXI century. Desalination and Water Treatment, 265, pp. 71-93. DOI:10.5004/dwt.2022.28604
- Aljumaily, M.M., Ali, N.S., Mahdi, A.E., Alayan, H.M., AlOmar, M., Hameed, M.M., Ismael, B., Alsalhy, Q.F., Alsaadi, M.A., Majdi, H.S. & Mohammed, Z. (2022). Modification of poly(vinylidene fluoride-co-hexafluoropropylene) membranes with DES-functionalized carbon nanospheres for removal of methyl orange by membrane distillation. Water, 14, 9, 1396. DOI:10.3390/w14091396
- Alqahtani, A. S. (2024) Indisputable roles of different ionic liquids, deep eutectic solvents and nanomaterials in green chemistry for sustainable organic synthesis. Journal of Molecular Liquids, 399, 124469. DOI:10.1016/j.molliq.2024.124469
- Bayabil, H. K., Teshome, F. T., & Li, Y. C. (2022). Emerging Contaminants in Soil and Water. Frontiers in Environmental Science, 10, 873499. DOI: 10.3389/fenvs.2022.873499
- Benkhaya, S., M’rabet, S. & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. DOI:10.1016/j.inochem.2020.107891
- Białowąs, M., Kończak, B., Chałupnik, S. & Kalka J. (2024). Analysis of the feasibility of using biopolymers of different viscosities as immobilization carriers for laccase in synthetic dye removal. Archives of Environmental Protection, 50, 1, pp. 19-34. DOI:10.24425/aep.2024.149429
- Blanco, L., Martínez-Rico, O., Domínguez, Á. & González, B. (2023). Removal of Acid Blue 80 from aqueous solutions using chitosan-based beads modified with choline chloride:urea deep eutectic solvent and FeO. Water Resources and Industry, 29, 100195. DOI:10.1016/j.wri.2022.100195
- Blano, L.V., Sas, O.G., Sánchez, P.B., Santiago, Á.D. & de Prado, B.G. (2022). Congo red recovery from water using green extraction solvents. Water Resources and Industry, 27, 100170. DOI:10.1016/j.wri.2021.100170
- Bratovcic, A. (2023). Recent achievements in photocatalytic degradation of organic water contaminants. Kemija u Industriji, 72, pp. 573−583. DOI:10.15255/KUI.2022.058
- Chakraborty, G., Bhattarai, A. & De, R. (2022). Polyelectrolyte – Dye interactions: An overview. Polymers, 14, 598. DOI:10.3390/polym14030598
- Chavan, R.B. Handbook of textile and industrial dyeing. Principles, Processes and Types of Dyes. 16 – Environmentally friendly dyes. Volume 1 in Woodhead Publishing Series in Textiles. 2011, pp. 515-561. DOI:10.1533/9780857093974
- Chemat, F., Vian, M.A., Fabiano-Tixier, A-S., Nutrizio, M., Jambrak, A.R., Munekata, P.E.S., Lorenzo, J.M., Barba, F.J., Binello, A. & Cravotto, G. (2020). A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry, 22, 2325, pp. 2325-2353. DOI:10.1039/C9GC03878G
- Chen, K., Dong, H., Ni, Y., Qian, Y., Wang, Y. & Xu, K. (2024). Selective extraction of anionic and cationic dyes using tailored hydrophobic deep eutectic solvents. Talanta, 268, 1, 125312. DOI:10.1016/j.talanta.2023.125312
- Crema, A. P. S., Schaeffer, N., Bastos, H., Silva, L.P., Abranches, D. O., Passos, H., Hespanhol, M. C. & Coutinho, J.A. P. (2023). New family of type V eutectic solvents based on 1,10-phenanthroline and their application in metal extraction. Hydrometallurgy, 215, 105971. DOI: 10.1016/j.hydromet.2022.105971
- Cruz, K.A.M.L., Rocha, F.R.P. & Hespanhol, M.C. (2024). Greener route for recovery of high-purity lanthanides from the waste of nickel metal hydride battery using a hydrophobic deep eutectic solvent. ACS Sustainable Chemistry Engineering, 12, 16, 6169–6181. DOI: 10.1021/acssuschemeng.3c07784
- Date, M. & Jaspal, D. (2024). Dyes and heavy metals: removal, recovery and wastewater reuse - a review. Sustainable Water Resources Management, 10, 90. DOI: 10.1007/s40899-024-01073-8
- Duque, M., Snajuan, A., Bou-Ali, M.M., Alonso, R.M., Campanero, M.A. (2023). Physicochemical characterization of hydrophobic type III and type V deep eutectic solvents based on carboxylic acids. Journal of Molecular Liquids, 392, 1, 123431. DOI:10.1016/j.molliq.2023.123431
- Ealias, A. M., Meda, G. & Tanzil, K. (2024). Recent progress in sustainable treatment technologies for the removal of emerging contaminants from wastewater: A review on occurrence, global status and impact on biota. Reviews of Environmental Contamination and Toxicology, 262, 16. DOI: 10.1007/s44169-024-00067-z
- El Achkar, T., Greige-Gerges, H. & Fourmentin, S. (2021). Basics and properties of deep eutectic solvents: a review. Environmental Chemistry Letters, 19, pp. 3397–3408. DOI: 10.1007/s10311-021-01225-8
- Feng, F., Wang, M., Zhang, J., Ding, H., Yu, L., Guo, W., Guo, L., Liang, Q., Zhang, Q., Lu, C. & Li, X. (2024). Hydrogen bonding-based deep eutectic solvents for choline chloride/sulfamide and its application in the recycling of precious metals. Journal of Environmental Chemical Engineering, 12(5), 113611. DOI: 10.1016/j.jece.2024.113611.
- Hassan, M.F., Khan, A.S., Akbar, N., Ibrahim, T.H., Khamis, M.I., Jumean, F.H., Siddiqui, R., Khan, N.A. & Yasir, N. (2022). Efficient extraction of methylene blue from aqueous solution using phosphine-based deep eutectic solvents with carboxylic acid. Processes, 10, 2151. DOI:10.3390/pr10102152
- Haq, H.U., Wali, A., Safi, F., Arain, M.B., Kong, L. & Boczkaj, G. (2023). Natural deep eutectic solvent based ultrasound assisted liquid-liquid micro-extraction method for methyl violet dye determination in contaminated river water. Water Resources and Industry, 29, 100210. DOI:10.1016/j.wri.2023.100210
- Hussain, Z., Chang, N., Sun, J., Xiang, S., Ayaz, T., Zhang, H. & Wang, H. (2022). Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. Journal of Hazardous Materials, 422, 126778. DOI:10.1016/j.jhazmat.2021.126778
- Ilame, T. & Ghosh, A. (2022). The promising applications of nanoparticles for synthetic dyes removal from wastewater: recent review. Management of Environmental Quality, 33(2), pp. 451-477. DOI:10.1108/MEQ-07-2021-0179
- Jeong, C., Ansari, M. H., Anwer, A. H., Kim S. H., Nasar, A., Shoeb, M. & Mashkoor, F. (2023). A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Separation and Purification Technology, 305, 122416. DOI:10.1016/j.seppur.2022.122416
- Kaczorowska, M.A. (2022). The use of polymer inclusion membranes for the removal of metal ions from aqueous solutions—the latest achievements and potential industrial applications: a review. Membranes, 12, 1135. DOI:10.3390/membranes12111135
- Kaczorowska, M. A., Bożejewicz, D. & Witt, K. (2023a). Application of a deep eutectic mixture and ionic liquid as carriers in polymer adsorptive membranes for removal of copper(II) and zinc(II) ions from computer scrap leachates. Desalination and Water Treatment, 316, pp. 505-513. DOI:10.5004/dwt.2023.30166
- Kaczorowska, M. A., Bożejewicz, D. & Witt, K. (2023b). The application of polymer inclusion membranes for the removal of emerging contaminants and synthetic dyes from aqueous solutions - A mini review. Membranes, 13, 132. DOI:10.3390/membranes1302013
- Khodabandeloo, F., Shahsavarifar, S., Nayebi, B. Niavol, K.P., Nayebi, B., Varma, R.S., Cha, J.H., Jang, H.W., Kim, D. & Shokouhimehr, M. (2023). Application of nanostructured semiconductor photocatalysts for the decontamination of assorted pollutants from wastewater. Inorganic Chemistry Communication, 157, 111357. DOI:10.1016/j.inoche.2023.111357
- Kizil, N., Erbilgin, D.E., Yola, M.L. & Soylak, M. (2024). An environmentally friendly hydrophobic deep eutectic solvent dispersive liquid liquid microextraction for spectrophotometric analysis of indigo carmine (E132). Optical and Quantum Electronics, 56, 341. DOI:10.1007/s11082-023-05964-6
- Kumar, G., Kumar, K. & Bharti, A. (2024). Quantum chemistry-based approach for density prediction of non-ionic hydrophobic eutectic solvents. Journal of Solution Chemistry, 53, pp.1195–1210. DOI:10.1007/s10953-024-01372-w
- Kunasekaran, K., Harikumar, N. S. & Ramalingam, A. (2024). Volumetric investigation of Cu(II) And Hg(II) aqueous mixtures with {tetrabutylammonium bromide plus glycerol (1:3)} deep eutectic solvents and extraction performances of {tetrabutylammonium bromide plus capric acid/oleic acid} over divalent (Cu and Hg) heavy metals. Journal of Chemical & Engineering Data, 69(3), pp. 1188-1218. DOI:10.1021/acs.jced.3c00770
- Kurtulbaş, E., Ciğeroğlu, Z., Şahin, S., El Messaoudi, N. & Mehmeti V. (2024). Monte Carlo, molecular dynamic, and experimental studies of the removal of malachite green using g-C3N4/ZnO/Chitosan nanocomposite in the presence of a deep eutectic solvent. International Journal of Biological Macromolecules, 274, 1, 133378. DOI:10.1016/j.ijbiomac.2024.133378
- Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials. Archives of Environmental Protection, 49, 1 pp. 47–56. DOI 10.24425/aep.2023.144736
- Liu, J., Chen, B., Huang, Y., Cao, Y., Chen, J., Wang, L., Liu, Y. & Fan, Y. (2024). Efficient and clean treatment of indium-bearing zinc ferrite: A new approach using a water-regulated deep eutectic solvent. Separation and Purification Technology, 347, 127576. DOI:10.1016/j.seppur.2024.127576
- Liu, L., Zhu, G., Huang, Q., Yin, C., Jiang, X., Yang, X. & Xie, Q. (2021). Efficient recovery of Au(III) through PVDF-based polymer inclusion membranes containing hydrophobic deep eutectic solvent. Journal of Molecular Liquids, 343, 117670. DOI:10.1016/j.molliq.2021.117670.
- Mafakheri, N., Shamsipur, M. & Babajani, N. (2024). Development of a dispersive liquid–liquid microextraction procedure based on a natural deep eutectic solvent for ligand-less preconcentration and determination of heavy metals from water and food samples, Microchemical Journal, 199, 110010. DOI:10.1016/j.microc.2024.110010
- Majidi, E. & Bakhshi, H. (2024). Hydrophobic deep eutectic solvents characterization and performance for efficient removal of heavy metals from aqueous media, Journal of Water Process Engineering, 57, 104680. DOI:10.1016/j.jwpe.2023.104680.
- Martín, M. I., García-Díaz, I. & López, F. A. (2023). Properties and perspective of using deep eutectic solvents for hydrometallurgy metal recovery. Minerals Engineering, 203, 108306. DOI:10.1016/j.mineng.2023.108306
- Martínez-Rico, Ó., Asla, A., Domínguez, Á. & González, B. (2024). Reversible dye extraction from aqueous matrices using ammonium salt-based deep eutectic solvents. Separation and Purification Technology, 335, 126208. DOI:10.1016/j.seppur.2023.126208
- Moody, V. & Needles, H.L. (2004). Tufted Carpet. Textile fibers, dyes, finishes, and processes. William Andrew, Norwich, pp. 155-175.
- Nejrotti, S., Antenucci, A., Pontremoli, C., Gontrani, L., Barbero, N., Carbone, M. & Bonomo, M. (2022). Critical assessment of the sustainability of deep eutectic solvents: A case study on six choline chloride-based mixtures. ACS Omega, 7, 51, pp. 47449–47461. DOI:10.1021/acsomega.2c06140
- Nithya, R., Thirunavukkarasu, A., Sathya, A.B. & Sivashankar, R. (2021). Magnetic materials and magnetic separation of dyes from aqueous solutions: a review. Environmental Chemistry Letters, 19, pp. 1275-1294. DOI:10.1007/s10311-020-01149-9
- Ola, P. D. & Matsumoto, M. (2024). Extraction of Au(III), Pt(IV), and Pd(II) from aqueous media with deep eutectic solvent dissolved in n-heptane as extractant. Indonesian Journal of Chemistry, 23, 6, pp.1735-1741. DOI:10.22146/ijc.80862
- Omar, K.A. & Sadeghi, R. (2022). Hydrophobic deep eutectic solvents: thermo-physical characteristic and their application in liquid-liquid extraction. Journal of the Iranian Chemical Society, 19, pp. 3529-3537. DOI:10.1007/s13738-022-02547-2
- Patel, D., Suthar, K. J., Balsora, H. K., Patel, D., Panda, S. R. & Bhavsar, N. (2024). Estimation of density and viscosity of deep eutectic solvents: Experimental and machine learning approach. Asia-Pacific Journal of Chemical Engineering, e3151. DOI:10.1002/apj.3151
- Prabhune, A. & Dey, R. (2023). Green and sustainable solvents of the future: Deep eutectic solvents. Journal of Molecular Liquids, 379, 121676. DOI:10.1016/j.molliq.2023.121676.
- Rao, H.S.P. (2023). Deep eutectic solvents. Resonance, 28, pp. 1865–1874. DOI:10.1007/s12045-023-1724-z
- Santana-Mayor, A., Rodríguez-Ramos, R., Herrera-Herrera, A.V., Socas-Rodríguez, B., & Rodríguez-Delgado, M.A. (2021). Deep eutectic solvents. The new generation of green solvents in analytical chemistry. Trends in Analytical Chemistry, 134, 116108. DOI:10.1016/j.trac.2020.116108.
- Santhosh, K.N., Samage, A., Mahadevaprasad, K.N., Aditya, D.S., Jayapandi, S., Yoon, H. & Nataraj, S.K. (2024). Harnessing deep eutectic solvents for upcycling waste membranes into high-performance adsorbents and energy storage materials. Chemical Engineering Journal, 484, 149747. DOI:10.1016/j.cej.2024.149747
- Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H. Y. & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review, Journal of Environmental Chemical Engineering, 9, 4, 105688. DOI:10.1016/j.jece.2021.105688.
- Shuping, C., Zhihan, Z., Dong, W., Wenjing, Z., Tao, Q., Zhi, W., Wanhai, X., Yong, L. & Guobiao, L. (2025). Selective leaching and recovery of rare earth from NdFeB waste through a superior selective and stable deep eutectic solvent. Separation and Purification Technology, Part B, 353, 128498. DOI:10.1016/j.seppur.2024.128498.
- Słupek, E., Makoś, P. & Gębicki, J. (2020). Deodorization of model biogas by means of novel non-ionic deep eutectic solvent. Archives of Environmental Protection, 46, 1, pp. 41–46. DOI:10.24425/aep.2020.132524
- Sriram, G., Bendre, A., Mariappan, E., Altalhi, T., Kigga, M., Ching, Y.C., Jung, H-Y., Bhaduri, B. & Kurkuri, M. (2022). Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism-a review. Sustainable Materials and Technologies, 31, 300378. DOI:10.1016/j.susmat.2021.e00378
- Srivastav, A. L., Patel, N., Rani, L., Kumar, P., Dutt, I., Maddodi, B. S. & Chaudhary, V. K. (2024). Sustainable options for fertilizer management in agriculture to prevent water contamination: a review. Environment, Development and Sustainability, 26, pp. 8303–8327. DOI:10.1007/s10668-023-03117-z
- Viyanni, P.M. & Sethuraman, M.G. (2024). Electrodeposition of NiCo on stainless steel substrate using deep eutectic solvent for efficient hydrogen evolution and methanol oxidation reactions. Journal of Electroanalytical Chemistry, 967, 118471. DOI:10.1016/j.jelechem.2024.118471
- Wang, B., Wang, Y. & Xu, T. (2023). Recent advances in the selective transport and recovery of metal ions using polymer inclusion membranes. Advanced Materials Technologies, 8, 22, 2300829. DOI:10.1002/admt.202300829
- Wang, C. & Hua, E. (2024). Extraction of metal ions using novel deep eutectic solvents with chelating amine. Journal of Solution Chemistry, 53, pp. 1340–1352. DOI:10.1007/s10953-024-01378-4
- Yasir, N., Khan, A.S., Akbar, N., Hassan, M.F., Ibrahim, T.H., Khamis, M., Siddiqui, R., Khan, N.A. & Nancarrow, P. (2022). Amine-based deep eutectic solvents for alizarin extraction from aqueous media. Processes, 10, 794. DOI:10.3390/pr10040794
- Zahid, M., Ahmad, H., Drioli, E., Rehan, Z.A., Rashid, A., Akram, S. & Khalid, T. (2021). Role of polymeric nanocomposite membranes for the removal of textile dyes from wastewater. Aquananotechnology, Application of Nanomaterials for Water Purification, pp. 91-103. DOI:10.1016/B978-0-12-821141-0.00006-9
- Zhang, H., Zheng, Y., Wang, H. & Chang, N. (2024). Preparation of starch-based adsorbing-flocculating bifunctional material St-A/F and its removal of active, direct and disperse dyes from textile printing and dyeing wastewater. Polymer Bulletin, 81, pp. 2777-2800. DOI:10.1007/s00289-023-04864-9
- Zhao, Q., Wu, F., Shih, A. A., Fung, C. K., Gao, P. Y. & Liu, M. X. (2024). Enhancing separation of Y(III) from Sr(II) using tributyl phosphate in a novel deep eutectic solvent media. The American Institute of Chemical Engineers Journal, e18552. DOI:10.1002/aic.18552
Date
22.05.2025Publication type
ArticleIdentifier
DOI: 10.24425/aep.2025.154753DOI
10.24425/aep/2025.154753Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science