Details

Title

A new ecological mineral-carbonaceous material for adsorption of organic pollutants – a step towards a circular economy

Journal title

Archives of Environmental Protection

Yearbook

2025

Volume

51

Issue

2

Authors

Affiliation

Słomkiewicz, Piotr : Institute of Chemistry, Jan Kochanowski University, Kielce, Poland ; Dołęgowska, Sabina : Institute of Chemistry, Jan Kochanowski University, Kielce, Poland ; Piekacz, Katarzyna : Institute of Chemistry, Jan Kochanowski University, Kielce, Poland ; Wideł, Dariusz : Institute of Chemistry, Jan Kochanowski University, Kielce, Poland ; Włodarczyk-Makuła, Maria : Faculty of Infrastructure and Environment, Częstochowa University of Technology, Poland

Keywords

circular economy; ; apple pomace; ; cement dust; ; biochar; ; adsorption; ; fungicide;

Divisions of PAS

Nauki Techniczne

Coverage

62-72

Publisher

Polish Academy of Sciences

Bibliography

  1. Abin-Bazaine, A., Trujillo, A.C. & Olmos-Marquez, M., (2022). Adsorption Isotherms: Enlightenment of the Phenomenon of Adsorption. In: Ince, M., Ince, O.K. (eds) Wastewater Treatment. IntechOpen. DOI:10.5772/intechopen.104260
  2. Amalina, F., Razak, A.S.A., Krishnan, S., Sulaiman, H., Zularisam, A.W. & Nasrullah, M. (2022). Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review. J. Hazard. Mater. Adv. 7, 100134. DOI:10.1016/j.hazadv.2022.100134
  3. Barnat-Hunek, D., Góra, J., Suchorab, Z. & Łagód, G. (2018). Cement kiln dust, Waste and Supplementary Cementitious Materials in Concrete: Characterisation, Properties and Applications. DOI:10.1016/B978-0-08-102156-9.00005-5
  4. Barreira, J.C.M., Arraibi, A.A. & Ferreira, I.C.F.R. (2019). Bioactive and functional compounds in apple pomace from juice and cider manufacturing: Potential use in dermal formulations. Trends Food Sci. Technol. 90, pp. 76–87. DOI:10.1016/j.tifs.2019.05.014
  5. Bhat, V.S., Cohen, S.M., Gordon, E.B., Wood, C.E., Cullen, J.M., Harris, M.A., Proctor, D.M. & Thompson, C.M. (2020). An adverse outcome pathway for small intestinal tumors in mice involving chronic cytotoxicity and regenerative hyperplasia: a case study with hexavalent chromium, captan, and folpet. Crit. Rev. Toxicol. 50, pp. 685–706. DOI:10.1080/10408444.2020.1823934
  6. Borek, K., Czapik, P. & Dachowski, R. (2023). Cement Bypass Dust as an Ecological Binder Substitute in Autoclaved Silica–Lime Products. Materials (Basel). 16. DOI:10.3390/ma16010316
  7. Buss, W., Wurzer, C., Manning, D.A.C., Rohling, E.J., Borevitz, J. & Mašek, O. (2022). Mineral-enriched biochar delivers enhanced nutrient recovery and carbon dioxide removal. Commun. Earth Environ. 3, pp. 1–11. DOI:10.1038/s43247-022-00394-w
  8. Charmas, B., Wawrzaszek, B. & Jedynak, K. (2024). Effect of pyrolysis temperature and hydrothermal activation on structure, physicochemical, thermal and dye adsorption characteristics of the biocarbons. ChemPhysChem 25, pp. 1–8. DOI:10.1002/cphc.202300773
  9. Charmas, B., Zięzio, M. & Jedynak, K. (2023). Assessment of the Porous Structure and Surface Chemistry of Activated Biocarbons Used for Methylene Blue Adsorption. Molecules 28. DOI:10.3390/molecules28134922
  10. Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and Thhe Committee of the Regions - Taking sustainable use of resources forward - A Thematic Strategy on the prevention and recycling of waste {SEC(2005) 1681} {SEC(2005) 1682}
  11. Cutillas, V., Jesús, F., Ferrer, C. & Fernández-Alba, A.R. (2021). Overcoming difficulties in the evaluation of captan and folpet residues by supercritical fluid chromatography coupled to mass spectrometry. Talanta 223, 121714. DOI:10.1016/j.talanta.2020.121714
  12. Directive 2006/12/EC of the European Parliament and of the Council of 5 April 2006 on waste (Text with EEA relevance)
  13. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (Text with EEA relevance)
  14. Document 52005DC0666 - Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions - Promoting the sustainable use of resources - Thematic Strategy on the prevention and recycling of waste {SEC(2005) 1681} {SEC(2005) 1682}. (in Polish)
  15. El-Haggar, S.M. (2007). Sustainability of Industrial Waste Management. Sustain. Ind. Des. Waste Manag. pp. 307–369. DOI:10.1016/b978-012373623-9/50012-5
  16. Enaime, G., Baçaoui, A., Yaacoubi, A. & Lübken, M. (2020). Biochar for wastewater treatment-conversion technologies and applications. Appl. Sci. 10. DOI:10.3390/app10103492
  17. Environmental Protection Agancy: https://www3.epa.gov/pesticides/chem_search/reg_actions/reregistration/fs_ PC-081301_1-Sep-99.pdf
  18. Environmental Protection Agency: https://www.epa.gov/sites/default/files/2016-09/documents/captan.pdf
  19. European Parliament, 2023: Circular economy: definition, importance and benefits
  20. Frydel, L., Słomkiewicz, P.M. & Szczepanik, B. (2024). The adsorption studies of phenol derivatives on halloysite-carbon adsorbents by inverse liquid chromatography. Adsorption 30, pp. 185–199. DOI:10.1007/s10450-023-00396-w
  21. Gajda, A., Jodłowski, P., Kozieł, K., Kurowski, G., Hyjek, K., Skoczylas, N. & Pajdak, A. (2024). Adsorption of selected GHG on metal-organic frameworks in the context of accompanying thermal effects. Arch. Environ. Prot. 50, pp. 51–63. DOI:10.24425/aep.2024.152895
  22. Gommes, C.J. & Roberts, A.P. (2018). Stochastic analysis of capillary condensation in disordered mesopores. Phys. Chem. Chem. Phys. 20, pp. 13646-13659. DOI:10.1039/C8CP01628C
  23. Grasso, S. (2020). Extruded snacks from industrial by-products: A review. Trends Food Sci. Technol. 99, pp. 284–294. DOI:10.1016/j.tifs.2020.03.012
  24. He, Q.K., Xu, C.L., Li, Y.P., Xu, Z.R., Luo, Y.S., Zhao, S.C., Wang, H.L., Qi, Z.Q. & Liu, Y. (2022). Captan exposure disrupts ovarian homeostasis and affects oocytes quality via mitochondrial dysfunction induced apoptosis. Chemosphere 286, 131625. DOI:10.1016/j.chemosphere.2021.131625
  25. Kainth., S., Sharma, P. & Pandey, O.P. (2024). Green sorbents from agricultural wastes: A review of sustainable adsorption materials. Appl. Surf. Sci. Adv. 19, 100562. DOI:10.1016/j.apsadv.2023.100562
  26. Kalina, M., Sovova, S., Svec, J., Trudicova, M., Hajzler, J., Kubikova, L. & Enev, V. (2022). The Effect of Pyrolysis Temperature and the Source Biomass on the Properties of Biochar Produced for the Agronomical Applications as the Soil Conditioner. Materials (Basel) 15. DOI:10.3390/ma15248855
  27. Kalinowska, M., Gołebiewska, E., Zawadzka, M., Choińska, R., Koronkiewicz, K., Piasecka-Jóźwiak, K. & Bujak, M. (2023). Sustainable extraction of bioactive compound from apple pomace through lactic acid bacteria (LAB) fermentation. Sci. Rep. 13, pp. 1–16. DOI:10.1038/s41598-023-46584-0
  28. Kane, S. & Ryan, C. (2022). Biochar from food waste as a sustainable replacement for carbon black in upcycled or compostable composites. Compos. Part C Open Access 8, 100274. DOI:10.1016/j.jcomc.2022.100274
  29. Ke-Fa, C. (2007). Surface structure of blended coals during pyrolysis. J. Ind. Eng. Chem. 58, pp. 1798–1804.
  30. Kim, H.C., Woo, H.E., Jeong, I., Oh, S.J., Lee, S.H. & Kim, K. (2019). Changes in Sediment Properties Caused by a Covering of Oyster Shells Pyrolyzed at a Low Temperature. J. Korean Soc. Mar. Environ. Saf. 25, pp. 74–80. DOI:10.7837/kosomes.2019.25.1.074
  31. Lee, S.M., Lee, D., Kil, J.H., Lee, T., Song, H. & Sung Yum, W. (2023). Characteristics Analysis of Chlorine Bypass Dust and Water-washed Residue. Resour. Recycl. 32, pp. 44–51. DOI:10.7844/kirr.2023.32.5.44
  32. Liu, X.Q., Ding, H.S., Wang, Y.Y., Liu, W.J. & Jing, H. (2016). Pyrolytic Temperature Dependent and Ash Catalyzed Formation of Sludge Char with Ultra-High Adsorption to 1-Naphthol. Environ. Sci. Technol. 50, pp. 2602–2609. DOI:10.1021/acs.est.5b04536
  33. Lyu, F., Luiz, S.F., Azeredo, D.R.P., Cruz, A.G., Ajlouni, S. & Ranadheera, C.S. (2020). Apple pomace as a functional and healthy ingredient in food products: A review. Processes 8, pp. 1–15. DOI:10.3390/pr8030319
  34. Martău, G.A., Teleky, B.E., Ranga, F., Pop, I.D. & Vodnar, D.C. (2021). Apple Pomace as a Sustainable Substrate in Sourdough Fermentation. Front. Microbiol. 12, pp. 1–16. DOI:10.3389/fmicb.2021.742020
  35. Nair, R.R., Kißling, P.A., Marchanka, A., Lecinski, J., Turcios, A.E., Shamsuyeva, M., Rajendiran, N., Ganesan, S., Srinivasan, S.V., Papenbrock, J. & Weichgrebe, D. (2023). Biochar synthesis from mineral and ash-rich waste biomass, part 2: characterization of biochar and co-pyrolysis mechanism for carbon sequestration. Sustain. Environ. Res. 33. DOI:10.1186/s42834-023-00176-9
  36. National Strategy for Reducing Food Loss and Waste and Recycling Organics, EPA (https://www.epa.gov/circulareconomy/national-strategy-reducing-food-loss-and-waste-and-recycling-organics)
  37. Niedziński, T., Łabętowicz, J., Stępień, W. & Pęczek, T. (2023). Analysis of the Use of Biochar from Organic Waste Pyrolysis in Agriculture and Environmental Protection. J. Ecol. Eng. 24, pp. 85–98. DOI:10.12911/22998993/159347
  38. Pires, A. & Martinho, G. (2019). Waste hierarchy index for circular economy in waste management. Waste Manag. 95, pp. 298–305. DOI:10.1016/j.wasman.2019.06.014
  39. Qurat-ul-Ain, Shafiq, M., Capareda, S.C. & Firdaus-e-Bareen. (2021). Effect of different temperatures on the properties of pyrolysis products of Parthenium hysterophorus. J. Saudi Chem. Soc. 25, 101197. DOI:10.1016/j.jscs.2021.101197
  40. Ren, N., Tang, Y. & Li, M. (2018). Mineral additive enhanced carbon retention and stabilization in sewage sludge-derived biochar. Process. Saf. Environ. Prot. 115, pp. 70–78. DOI:10.1016/j.psep.2017.11.006
  41. Roik, T., Rashedi, A., Khanam, T., Chaubey, A., Balaganesan, G. & Ali, S. (2021). Structure and properties of new antifriction composites based on tool steel grinding waste. Sustain. 13, pp. 3–11. DOI:10.3390/su13168823
  42. Sakhiya, A.K., Anand, A. & Kaushal, P. (2020). Production, activation, and applications of biochar in recent times, Biochar. Springer Singapore. DOI:10.1007/s42773-020-00047-1
  43. Sefatlhi, K.L., Ultra, V.U., Majoni, S., Oleszek, S. & Manyiwa, T. (2024). Adsorption of nitrate and phosphate ions using ZnCl2-activated biochars from phytoremediation biomasses. Arch. Environ. Prot. 50, pp. 65–83. DOI: 10.24425/aep.2024.151687
  44. Storck, S., Bretinger, H. & Maier, W.F. (1998). Characterization of micro- and mesoporous solids by physisorption methods and pore-size analysis. Appl. Catal. A Gen. 174, pp. 137–146. DOI:10.1016/S0926-860X(98)00164-1
  45. Suárez-Garcı́a, F., Martı́nez-Alonso, A. & Tascón, J.M.D. (2002). Pyrolysis of apple pulp: chemical activation with phosphoric acid. J. Anal. Appl. Pyrolysis. 63, pp. 283–301. DOI:10.1016/S0165-2370(01)00160-7
  46. Suliman, W., Harsh, J.B., Abu-Lail, N.I., Fortuna, A.M., Dallmeyer, I. & Garcia-Perez, M. (2016). Influence of feedstock source and pyrolysis temperature on biochar bulk and surface properties. Biomass and Bioenergy 84, pp. 37–48. DOI:10.1016/j.biombioe.2015.11.010
  47. Toncón-Leal, C.F., Villarroel-Rocha, J., Silva, M.T.P., Braga T.P. & Sapag, K. (2021). Characterization of mesoporous region by the scanning of the hysteresis loop in adsorption–desorption isotherms. Adsorption 27, pp. 1109–1122. DOI:10.1007/s10450-021-00342-8
  48. Tamasiga, P., Miri, T., Onyeaka, H. & Hart, A. (2022). Food Waste and Circular Economy: Challenges and Opportunities. Sustain. 14. DOI:10.3390/su14169896
  49. Tappyrova, N.I., Kravtsova, O.N., Protodyakonova, N.A., Timofeev, A.M. & Andreev, A.S. (2022). Capillary condensation hysteresis model in porous bodies. AIP Conf. Proc. 2528, 020049. DOI:10.1063/5.0106255
  50. Tkaczewska, E. (2019). The Influence of Cement Bypass Dust on the Properties of Cement Curing Under Normal and Autoclave Conditions. Struct. Environ. 11, pp. 5–22. DOI:10.30540/sae-2019-001
  51. Tu, P., Zhang, G., Wei, G., Li, J., Li, Y., Deng, L. & Yuan, H. (2022). Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants. Bioresour. Bioprocess. 9. DOI:10.1186/s40643-022-00618-z
  52. Uliasz-Bocheńczyk, A. (2019). Chemical characteristics of dust from cement kilns. Gospod. Surowcami Miner. / Miner. Resour. Manag. 35, pp. 87–102. DOI:10.24425/gsm.2019.128524
  53. Vaiškūnaitė, R. (2024). Research of batch and fixed-bed column adsorption for phosphorus removal from wastewater using sewage sludge biochar. Arch. Environ. Prot. 50, pp. 72–81. DOI:10.24425/aep.2024.152897
  54. Wang, J., Zeng, P., Liu, Z. & Li, Y. (2023). Manufacture of potassium chloride from cement kiln bypass dust: An industrial implementation case for transforming waste into valuable resources. Heliyon 9, e21806. DOI:10.1016/j.heliyon.2023.e21806
  55. Zhang, S., Ji, Y., Dang, J., Zhao, J. & Chen, S. (2019). Magnetic apple pomace biochar: Simple preparation, characterization, and application for enriching Ag(I) in effluents. Sci. Total. Environ. 668, pp. 115–123. DOI:10.1016/j.scitotenv.2019.02.318
  56. Zhang, S., Ji, Y., Du, Y., Ma, X., Lin, J. & Chen, S. (2022). Apple-pomace-based porous biochar as electrode materials for supercapacitors. Diam. Relat. Mater. 130, 109507. DOI:10.1016/j.diamond.2022.109507
  57. Zhong, M., Huang, H., Xu, P. & Hu, J. (2023). Catalysis of Minerals in Pyrolysis Experiments. Minerals 13. DOI:10.3390/min13040515

Date

22.05.2025

Type

Article

Identifier

DOI: 10.24425/aep.2025.154757

DOI

10.24425/aep.2025.154757

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×