Details
Title
Effect of humic acid on the adsorption of selenium by lepidocrociteJournal title
Archives of Environmental ProtectionYearbook
2025Volume
51Issue
2Authors
Affiliation
Zhao, Shengmao : College of Resource and Environmental Engineering, Key Laboratory of Karst Georesource and Environment,Ministry of Education, Guizhou University, Guiyang 550025, PR China ; Zhu, Jian : College of Resource and Environmental Engineering, Key Laboratory of Karst Georesource and Environment,Ministry of Education, Guizhou University, Guiyang 550025, PR China ; Niyuhire, Elias : Ecole Normale Sup´erieure, D´epartement des Sciences Naturelles, Centre de Recherche en Sciences et de Perfectionnement Professionnel, Boulevard Mwezi Gisabo, B.P.: 6983 Bujumbura, Burundi ; Zheng, Ruyi : College of Resource and Environmental Engineering, Key Laboratory of Karst Georesource and Environment,Ministry of Education, Guizhou University, Guiyang 550025, PR China ; Mao, Wenjian : Guizhou Lvxing Qingyuan Environmental Protection Co., Ltd., Guiyang 550002, PR ChinaKeywords
humic acid ; lepidocrocite ; selenium ; AdsorptionDivisions of PAS
Nauki TechniczneCoverage
91-100Publisher
Polish Academy of SciencesBibliography
- Alsaiari, R., Shedaiwa, I., Al-Qadri, F.A., Musa, E.M., Alqahtani, H., Alkorbi, F., Alsaiari, N.A. & Mohamed, M.M. (2024). Peganum Harmala L. plant as green non-toxic adsorbent for iron removal from water. Archives of Environmental Protection, 50,1, pp. 3-12, DOI:10.24425/aep.2024.149427.
- Bao, Y., Bolan, N.S., Lai, J., Wang, Y., Jin, X., Kirkham, M.B., Wu, X., Fang, Z., Zhang, Y. & Wang, H. (2022). Interactions between organic matter and Fe (hydr)oxides and their influences on immobilization and remobilization of metal(loid)s: A review. Critical Reviews in Environmental Science and Technology, 52, 22, pp. 4016-4037, DOI:10.1080/10643389.2021.1974766.
- Bogusz, P., Zimnoch, U., Brodowska, M.S. & Michalak, J. (2024). The trend of changes in soil organic carbon content in Poland over recent years. Archives of Environmental Protection, 50,1, pp. 35-44. DOI:10.24425/aep.2024.149430.
- Bu, H., Lei, Q., Tong, H., Liu, C., Hu, S., Xu, W., Wang, Y., Chen, M. & Qiao, J. (2023). Humic acid controls cadmium stabilization during Fe(II)-induced lepidocrocite transformation. Science of the Total Environment, 861, pp. 160624. DOI:10.1016/j.scitotenv.2022.160624.
- Cheng, B., Liu, J., Li, X., Yue, L., Cao, X., Li, J., Wang, C. & Wang, Z. (2024). Bioavailability of selenium nanoparticles in soil and plant: the role of particle size. Environmental and Experimental Botany, 220, pp. 105682. DOI:10.1016/j.envexpbot.2024.105682.
- Das, S., Jim Hendry, M. & Essilfie-Dughan, J. (2013). Adsorption of selenate onto ferrihydrite, goethite, and lepidocrocite under neutral pH conditions. Applied Geochemistry, 28, pp. 185-193, DOI:10.1016/j.apgeochem.2012.10.026.
- Dinh, Q.T., Li, Z., Tran, T.A.T., Wang, D. & Liang, D. (2017). Role of organic acids on the bioavailability of selenium in soil: A review. Chemosphere, 184, pp. 618-635, DOI:10.1016/j.chemosphere.2017.06.034.
- Fan, J., Zhao, G., Sun, J., Hu, Y. & Wang, T. (2019). Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation. Science of the Total Environment, 684, pp. 476-485. DOI:10.1016/j.scitotenv.2019.05.246.
- Favorito, J.E., Eick, M.J. & Grossl, P.R. (2018). Adsorption of Selenite and Selenate on Ferrihydrite in the Presence and Absence of Dissolved Organic Carbon. Journal of Environmental Quality, 47,1, pp. 147-155, DOI:10.2134/jeq2017.09.0352.
- Francisco, P.C.M., Sato, T., Otake, T., Kasama, T., Suzuki, S., Shiwaku, H. & Yaita, T. (2018). Mechanisms of Se(IV) Co-precipitation with Ferrihydrite at Acidic and Alkaline Conditions and Its Behavior during Aging. Environmental Science & Technology, 52, 8, pp. 4817-4826, DOI:10.1021/acs.est.8b00462.
- Jia, Y., Luo, T., Yu, X.-Y., Sun, B., Liu, J.-H. & Huang, X.-J. (2013). Synthesis of monodispersed α-FeOOH nanorods with a high content of surface hydroxyl groups and enhanced ion-exchange properties towards As(v). RSC Advances, 3, 36, pp. 15805-15811, DOI:10.1039/C3RA40980E.
- Kumpulainen, S., von der Kammer, F., Hofmann, T. (2008). Humic acid adsorption and surface charge effects on schwertmannite and goethite in acid sulphate waters. Water Research, 42,8, pp. 2051-2060, DOI: 10.1016/j.watres.2007.12.015.
- Kusmierek, K., Dabek, L. & Swiatkowski, A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials. Archives of Environmental Protection, 49,1, pp. 47-56, DOI:10.24425/aep.2023.144736.
- Li, Z., Liang, D., Peng, Q., Cui, Z., Huang, J. & Lin, Z. (2017). Interaction between selenium and soil organic matter and its impact on soil selenium bioavailability: A review. Geoderma, 295, pp. 69-79. DOI:10.1016/j.geoderma.2017.02.019.
- Olaetxea, M., De Hita, D., Garcia, C.A., Fuentes, M., Baigorri, R., Mora, V., Garnica, M., Urrutia, O., Erro, J., Zamarreño, A.M., Berbara, R.L. & Garcia-Mina, J.M. (2018). Hypothetical framework integrating the main mechanisms involved in the promoting action of rhizospheric humic substances on plant root- and shoot- growth. Applied Soil Ecology, 123, pp. 521-537. DOI:10.1016/j.apsoil.2017.06.007.
- Park, J.H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N. & Chung, J.-W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185,2, pp. 549-574. DOI:10.1016/j.jhazmat.2010.09.082.
- Peng, J., Fu, F., Ye, C. & Tang, B. (2022). Interaction between Se(IV) and fulvic acid and its impact on Se(IV) immobility in ferrihydrite-Se(IV) coprecipitates during aging. Environmental Pollution, 293, pp. 118552. DOI:10.1016/j.envpol.2021.118552.
- Pintor, A.M.A., Vieira, B.R.C., Brandão, C.C., Boaventura, R.A.R. & Botelho, C.M.S. (2020). Complexation mechanisms in arsenic and phosphorus adsorption onto iron-coated cork granulates. Journal of Environmental Chemical Engineering, 8, 5, pp. 104184, DOI:10.1016/j.jece.2020.104184.
- Qin, H.-B., Zhu, J.-M. & Su, H. (2012). Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China. Chemosphere, 86, 6, pp. 626-633, DOI:10.1016/j.chemosphere.2011.10.055.
- Qin, L., Wang, M., Sun, X., Yu, L., Wang, J., Han, Y. & Chen, S. (2023). Formation of ferrihydrite induced by low pe+pH in paddy soil reduces Cd uptake by rice: Evidence from Cd isotope fractionation. Environmental Pollution, 328, pp. 121644, DOI:10.1016/j.envpol.2023.121644.
- Rahimi, S., Soleimani, M. & Azadmehr, A.R. (2021). Performance Evaluation of Synthetic Goethite and Lepidocrocite Nanoadsorbents for the Removal of Aniline from a Model Liquid Fuel through Kinetic and Equilibrium Studies. Energy & Fuels, 35, 13, pp. 10659-10668, DOI:10.1021/acs.energyfuels.1c00474.
- Ros, G.H., van Rotterdam, A.M.D., Bussink, D.W. & Bindraban, P.S. (2016). Selenium fertilization strategies for bio-fortification of food: an agro-ecosystem approach. Plant and Soil, 404, 1, pp. 99-112. DOI:10.1007/s11104-016-2830-4.
- Rovira, M., Giménez, J., Martínez, M., Martínez-Lladó, X., de Pablo, J., Martí, V. & Duro, L. (2008). Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: Goethite and hematite. Journal of Hazardous Materials, 150, 2, pp. 279-284. DOI:10.1016/j.jhazmat.2007.04.098.
- Sefatlhi, K.L., Ultra, V.U., Stephen, M., Oleszek, S. & Manyiwa, T. (2024). Adsorption of nitrate and phosphate ions using ZnCl2-activated biochars from phytoremediation biomasses. Archives of Environmental Protection, 50, 3, pp. 65-83. DOI:10.24425/aep.2024.151687.
- Siéliéchi, J.M., Lartiges, B.S., Kayem, G.J., Hupont, S., Frochot, C., Thieme, J., Ghanbaja, J., d’Espinose de la Caillerie, J.B., Barrès, O., Kamga, R., Levitz, P. & Michot, L.J. (2008). Changes in humic acid conformation during coagulation with ferric chloride: Implications for drinking water treatment. Water Research, 42, 8, pp. 2111-2123, DOI:10.1016/j.watres.2007.11.017.
- Supriatin, S., Weng, L. & Comans, R.N.J. (2015). Selenium speciation and extractability in Dutch agricultural soils. Science of the Total Environment, 532, pp. 368-382. DOI:10.1016/j.scitotenv.2015.06.005.
- Terashima, M., Endo, T., Kimuro, S., Beppu, H., Nemoto, K. & Amano, Y. (2023). Iron-induced association between selenium and humic substances in groundwater from deep sedimentary formations. Journal of Nuclear Science and Technology, 60, 4, pp. 374-384. DOI:10.1080/00223131.2022.2111376.
- Tolu, J., Thiry, Y., Bueno, M., Jolivet, C., Potin-Gautier, M. & Le Hécho, I. (2014). Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich. Science of the Total Environment, 479-480, pp. 93-101. DOI:10.1016/j.scitotenv.2014.01.079.
- Weng, L., Vega, F.A., Supriatin, S., Bussink, W. & Riemsdijk, W.H.V. (2011). Speciation of Se and DOC in Soil Solution and Their Relation to Se Bioavailability. Environmental Science, Technology, 45,1, pp. 262-267. DOI:10.1021/es1016119.
- Xie, Y., Dong, H., Zeng, G., Zhang, L., Cheng, Y., Hou, K., Jiang, Z., Zhang, C. & Deng, J. (2017). The comparison of Se(IV) and Se(VI) sequestration by nanoscale zero-valent iron in aqueous solutions: The roles of solution chemistry. Journal of Hazardous Materials, 338, pp. 306-312. DOI:10.1016/j.jhazmat.2017.05.053.
- Xing, B., Ouyang, M., Graham, N. & Yu, W. (2020). Enhancement of phosphate adsorption during mineral transformation of natural siderite induced by humic acid: Mechanism and application. Chemical Engineering Journal, 393, pp. 124730. DOI:10.1016/j.cej.2020.124730.
- Ying, H. & Zhang, Y. (2019). Systems Biology of Selenium and Complex Disease. Biological Trace Element Research, 192, 1, pp. 38-50. DOI:10.1007/s12011-019-01781-9.
- Yoon, I.-H., Kim, K.-W., Bang, S. & Kim, M.G. (2011). Reduction and adsorption mechanisms of selenate by zero-valent iron and related iron corrosion. Applied Catalysis B: Environmental, 104,1, pp. 185-192. DOI:10.1016/j.apcatb.2011.02.014.
- Yuan, Z., Su, R., Ma, X., Yu, L., Pan, Y., Chen, N., Chernikov, R., Cheung, L.K.L., Deevsalar, R., Tunc, A., Wang, L., Zeng, X., Lin, J. & Jia, Y. (2023). Direct immobilization of Se(IV) from acidic Se(IV)-rich wastewater via ferric selenite Co-precipitation. Journal of Hazardous Materials, 460, pp. 132346. DOI:10.1016/j.jhazmat.2023.132346.
- Zhang, H., Xie, S., Bao, Z., Tian, H., Carranza, E.J.M., Xiang, W., Yao, L. & Zhang, H. (2020). Underlying dynamics and effects of humic acid on selenium and cadmium uptake in rice seedlings. Journal of Soils and Sediments, 20, 1, pp. 109-121. DOI:10.1007/s11368-019-02413-4.
- Zhang, J., Wang, X., Zhan, S., Li, H., Ma, C. & Qiu, Z. (2021). Synthesis of Mg/Al-LDH nanoflakes decorated magnetic mesoporous MCM-41 and its application in humic acid adsorption.
Date
22.05.2025Type
ArticleIdentifier
DOI: 10.24425/aep.2025.154760DOI
10.24425/aep.2025.154760Abstracting & Indexing
Abstracting & Indexing
Archives of Environmental Protection is covered by the following services:
AGRICOLA (National Agricultural Library)
Arianta
Baidu
BazTech
BIOSIS Citation Index
CABI
CAS
DOAJ
EBSCO
Engineering Village
GeoRef
Google Scholar
Index Copernicus
Journal Citation Reports™
Journal TOCs
KESLI-NDSL
Naviga
ProQuest
SCOPUS
Reaxys
Ulrich's Periodicals Directory
WorldCat
Web of Science