Details
Title
Phenolic Binders Based on Resole Resins for the Foundry Industry - Thermal CharacteristicsJournal title
Archives of Foundry EngineeringYearbook
2025Volume
vol. 25Issue
No 2Authors
Affiliation
Kmita, A. : AGH University of Krakow, Academic Centre for Materials and Nanotechnology,al. A. Mickiewicza 30, 30-059 Krakow, PolandKeywords
Phenolic resin ; Thermal decomposition ; Foundry industry ; Emission ; Environmental protectionDivisions of PAS
Nauki TechniczneCoverage
183-195Publisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Berdnikova, P.V., Zhizhina, E.G. & Pai, Z.P. (2021). Phenol-formaldehyde resins: properties, fields of application, and methods of synthesis. Catalysis in Industry. 13, 119-124. https://doi.org/10.1134/S2070050421020033.
- Alieva, A. P. (2021). Prospects for obtaining phenol-formaldehyde oligomers. Plasticheskie massy, (9-10), 22-26.
- Roczniak, A. (2019). Research of the influence of temperature and type of atmosphere on the release of chemical compounds from mold sand Alphaset technology. (in Polish). Kraków: AGH University of Science and Technology.
- Holtzer, M. & Kmita, A. (2020). Mold and core sands in metalcasting: chemistry and ecology. Sustainable Development.219-241.
- Ghosh, D.K. (2019). Comparison of molding sand technology between alphaset (APNB) and furan (FNB). Archives of Foundry Engineering. 19(4), 11-20. DOI: 24425/afe.2019.129623.
- Kmita, A., Roczniak, A. & Holtzer, M. (2016). The identification of pyrolysis products of the Alphaset binder with gas chromatography / mass spectrometry. Metalurgija. 56(1-2), 21-24.
- Kmita, A., Benko, A., Roczniak, A., Fraczek-Szczypta, A. & Holtzer, M. (2018). Pyrolysis of organic ester cured alkaline phenolic resin: Identification of products. Journal of Analytical and Applied Pyrolysis. 129, 6-12. https://doi.org/10.1016/j.jaap.2017.12.014.
- Kmita, A., Benko, A., Roczniak, A., & Holtzer, M. (2020). Evaluation of pyrolysis and combustion products from foundry binders: potential hazards in metal casting. Journal of Thermal Analysis and Calorimetry. 140, 2347-2356. https://doi.org/10.1007/s10973-019-09031-9.
- Scarbel, P., Bats, C.E. & Griffin, J. (2006). Effect of mold and binder formulation on gas evolution when pouring aluminum casting. AFS Transactions. 114, 435-445.
- Lytle, C.A., Bertsch, W. & Mc Kinley, M.D. (1998). Determination of thermal decomposition product from phenolic urethane resin by pyrolysis – gas chromatography –mass spectrometry. Journal of High Resolution Chromatography. 21(2), 128-132. ISSN: 0935-6304.
- Kmita, A. (2021). Thermal decomposition of nanocomposite foundry binder based on phenol-formaldehyde resin with zinc ferrite. Kraków: Wydawnictwa AGH. (in Polish).
- Laramee, R. & Canfield, A. (1972). Carbon/Carbon Composites—Solid Rocket Nozzle Material Processing, Design, and Testing. In H.T. Corten (Eds.), Composite Materials: Testing and Design (Second Conference). West Conshohocken, PA 19428-2959: ASTM International. https://doi.org/10.1520/STP27772S.
- Zhao, Yong, Yan, N. & Feng, M.W. (2013). Thermal degradation characteristics of phenol–formaldehyde resins derived from beetle infested pine barks. Thermochimica Acta. 555(10), 46-52. https://doi.org/10.1016/j.tca.2012.12.002.
- Gardziella, A., Pilato, L.A., Knop, A. (2000). Phenolic resins. Chemistry, applications, standarizations, safety and ecology. Springer, Verlag.
- Wang, S., Xing, X., Li, J. & Jing, X. (2018). Synthesis and characterization of poly (dihydroxybiphenyl borate) with high char yield for high-performance thermosetting resins. Applied Surface Science. 428, 912-923. https://doi.org/10.1016/j.apsusc.2017.09.213.
- Chiantore, O., Lazzari, M. & Fontana, M. (1995). Thermal decomposition of phenol-formaldehyde foundry resins. International Journal of Polymer Analysis and Characterization. 1(2), 119-130. https://doi.org/10.1080/10236669508233867.
- Johnston, P. K., Doyle, E. & Orzel, R. A. (1988). Phenolics: a literature review of thermal decomposition products and toxicity. Journal of the American College of Toxicology. 7(2), 201-220.
- He, G.B. & Riedl, B. (2003). Phenol –urea-formaldehyde cocondensed resol resins. Their synthesis, curing kinetics, and network properties. Journal of Polymer Science, Part B. 41(16), 1929-1938. https://doi.org/10.1002/polb.10558.
- Fyfe, C.A., McKinnon, M.S., Rudin, A. & Tchir, W.J. (1983). Investigation of the mechanism of the thermal decomposition of cured phenolic resins by high-resolution carbon-13 CP/MAS solid-state NMR spectroscopy. Macromolecules. 16(7), 1216-1219.
- Wang, J., Jiang, N. & Jiang, H. (2009). Effect of the evolution of phenol-formaldehyde resin on the high-temperature bonding. International Journal of Adhesion and Adhesives. 29(7), 718-723. https://doi.org/10.1016/j.ijadhadh.2009.03.001.
- Mustata, F., Tudorachi, N. & Bicu, I. (2015). The kinetic study and thermal characterization of epoxy resins crosslinked with amino carboxylic acids. Journal of Analytical and Applied Pyrolysis. 112, 180-191. https://doi.org/10.1016/j.jaap.2015.01.030.
- Visakh, P.M., Arao, Y. (2015). Thermal degradation of polymer blends, composites and nanocomposites.
- Rao, M.P.R., Rao, B.C. & Rajan, R.S.G. (1998). Thermal degradation kinetics of phenol—crotonaldehyde resins. Polymer Degradation and Stability. 61(2), 283-288. https://doi.org/10.1016/S0141-3910(97)00210-3.
- Kmita, A., Knauer, W., Holtzer, M., Hodor, K., Piwowarski, G., Roczniak, A. & Górecki, K. (2019). The decomposition process and kinetic analysis of commercial binder based on phenol-formaldehyde resin, using in metal casting. Applied Thermal Engineering. 156, 263-275. https://doi.org/10.1016/j.applthermaleng.2019.03.093.
- Poljanšek, I. & Krajnc, M. (2005). Characterization of phenol-formaldehyde prepolymer resins by in line FT-IR spectroscopy. Acta Chimica Slovenica. 52(3), 238-244.
- Friedman, H. (1969). New methods for evaluating kinetic parameters from thermal analysis data. Journal of Polymer Science Part B: Polymers Letters. 7, 41-46. https://doi.org/10.1002/pol.1969.110070109.
- Levchik, S.V. & Weil, E.D. (2004). Thermal decomposition, combustion and flame-retardancy of epoxy resins - A review of the recent literature. Polymer International. 53(12), 1901-1929. https://doi.org/10.1002/pi.1473.
- Holtzer, M., Dańko, R., Dańko, J., Kubecki, M., Żymankowska-Kumon, S., Bobrowski, A., Spiewok, W. (2013). The assesment of harmfulness of binding materials used for a new generation of core and molding sands. AKAPIT, Kraków (in Polish).
- Holtzer, M, Kmita, A. & Dańko, R.. (2015). The gases generation during thermal decomposition of moulding sands - comparison of inorganic and organic binders. Slévárenství. 63(7-8), 246-247.
- Trinowski, D. M. (2016). Comparing moulding and core trends in the US and EU casting industries. Huttenes-Albertus Chemische Werke GmbH, 1-13.
- Kmita, A., Fischer, C., Hodor, K., Holtzer, M. & Roczniak, A. (2018). Thermal decomposition of foundry resins: A determination of organic products by thermogravimetry-gas chromatography-mass spectrometry (TG-GC-MS). Arabian Journal of Chemistry. 11(3), 380-387. https://doi.org/10.1016/j.arabjc.2016.11.003.
- Holtzer, M., Dańko, R. & Kmita, A. (2016). Influence of a reclaimed sand addition to moulding sand with furan resin on its impact on the environment. Water, Air and Soil Pollution. 227(1), 1-12. https://doi.org/10.1007/s11270-015-2707-9.
- Holtzer, M., Dańko, R., Górny, M., Kmita, A. (2015). The mold/casting interface phenomena and their influence on the surface quality of casting. Cracow University of Technology Publisher.
- Holtzer, M., Dańko, R., Kmita, A., Drożyński, D., Kubecki, M., Skrzyński, M. & Roczniak, A. (2020). Environmental impact of the reclaimed sand addition to molding sand with furan and phenol-formaldehyde resin—a comparison. Materials. 13(19). 4395, 1-12. https://doi.org/10.3390/ma13194395.
- Holtzer, M., Dańko, R., Piasny, S., Kubecki, M., Drożyński, D., Roczniak, A., Skrzyński, M. & Kmita, A. (2021). Research on the release of dangerous compounds from the BTEX and PAHs groups in industrial casting conditions. Materials. 14(10), 2581. https://doi.org/10.3390/ma14102581.
- Report (2021). Phenolic Resin Market. Retrieved October 18, 2024, from https://www.researchandmarkets.com/reports/4053239/phenolic-resin-market-by-typeresol-novolac.
- EPA United States Environmental Protection Agency. (2018). What are hazardous air pollutants? Retrieved October 17, 2024, from https://www.epa.gov/haps/what-are-hazardous-air-pollutants.
- Giese, S.R, Shepard, A. (2014). Understanding emissions characteristics of a foundry sand binder. In 71st World Foundry Congress, 19-21 May 2014 (pp. 934-942). Bilbao, Spain.
- Lefebvre, J., Mamleev, V., Le Bras, M. & Bourbigot, S. (2005). Kinetic analysis of pyrolysis of cross-linked polymers. Polymer Degradation and Stability. 88(1), 85-91. https://doi.org/10.1016/j.polymdegradstab.2004.02.020.
- Bouajila, J., Raffin, G., Alamercery, S., Waton, H., Sanglar, C. & Grenier-Loustalot, M.F. (2003). Phenolic resins (IV). Thermal degradation of crosslinked resins in controlled atmospheres. Polymers and Polymer Composites. 11(5), 345-357. https://doi.org/10.1177/096739110301100501.
- Giese, S.R., Roorda, S.C. & Patersson, M.A. (2009). Thermal analysis of phenolic urethane binder and correlated properties. AFS Transactions. 117, 355-366.
- Gao Z, Lang X, Chen S, Zhao C (2021). Mini-review on the synthesis of lignin-based phenolic resin. Energy & Fuels. 35, 22, 18385-18395.
- Wan, P., Zhou, J., Li, Y., Yin, Y., Huang, D., Ji, X. & Shen, X. (2019). Experimental study on gas evolution process of binders in foundry industry based on TG-MS. Procedia Manufacturing. 37, 311-318. https://doi.org/10.1016/j.promfg.2019.12.053.
- Qian, X., Wan, P., Yin, Y., Qi, Y., Ji, X., Shen, X., Y.Li & Zhou, J. (2022). Gas evolution characteristics of three kinds of no-bake resin-bonded sands for foundry in production. China Foundry. 19(2), 140-148. https://doi.org/10.1007/s41230-022-1031-4.
- Lewandowski, J.L. (1997). Materials for foundry moulds. (in Polish)
- Pielichowski, K. (2013). Application of thermal analysis methods in the study of organic materials. Retrieved October 20, 2024, from https://Pg.Gda.Pl/Info/Polimery/Files/2013/10/Im-Swp-l-002h.pdf. (in Polish).
- Pielichowski, K., Njuguna, J., Majka, T.M. (2022). Thermal degradation of polymeric materials.
- Schnabel, W. (1981). Polymer degradation: principles and practical applications. Walter de Gruyter GmbH & Co KG.
- Fink, J. K. (2017). Reactive polymers: fundamentals and applications: a concise guide to industrial polymers. William Andrew.
- Rabek, J.F. (2017). Modern knowledge about polymers. Wydawnictwo Naukowe PWN. (in Polish).
- Bortel, E. (1994). Introduction to Polymer Chemistry. UJ, Kraków (in Polish).
- Pielichowski, J., Sobczak, J., Żółkiewicz, Z., Hebda, E. & Karwiński, A. (2011). The thermal analysis of polystyrene foundry model. Transaction of the Foundry Research Institute. 1, 15-21. (in Polish).
- Florjańczyk, Z., Penczek, S. (2002). Polymer Chemistry. Volume II Basic Synthetic Polymers and Their Applications. Oficyna Wydawnicza Politechniki Warszawskiej. (in Polish).
- Shuklaa, S.K., Srivastavaa, D. (2001). Epoxy/Resole blends-A study of its degradation kinetics. Indian Journal of Chemical Technology. 8, 357-361.
- Yangfei, C., Zhiqin, C., Shaoyi, X. & Hongbo, L. (2008). A novel thermal degradation mechanism of phenol-formaldehyde type resine. Thermochimi Acta. 476(1-2), 39-43. https://doi.org/10.1016/j.tca.2008.04.013.
- Chaussoy, N., Brandt, D. & Gérard, J.F. (2023). Formaldehyde-free and phenol-free non-toxic phenolic resins with high thermostability. ACS Applied Polymer Materials. 5(7), 5630-5640.
- Wang, C., Wu, Y., Liu, Q. & Wang, F. (2011). Analysis of the behaviour of pollutant gas emissions during wheat straw/coal cofiring by TG-FTIR. Fuell Process Technology. 92(5), 1037-1041. https://doi.org/10.1016/j.fuproc.2010.12.029.
- Chai, Y., Liu, J., Zhao, Y. & Yan, N. (2016). Characterization of modified phenol formaldehyde resole resins synthesized in situ with various boron compounds. Industrial & Engineering Chemistry Research. 55(37), 9840-9850.
- McKinley, M.D., Jefcoat, I.A., Herz, W.J. & Frederick, C. (1993). Air emissions from foundries: a current survey of literature, supplies and foundrymen. American Foundry Society Transactions. 101, 979-990.
- Liu, Y., Xie, Q., Li, X., Tian, F., Qiao, X., Chen, J. & Ding, W. (2019). Profile and source apportionment of volatile organic compounds from a complex industrial park. Environmental Science: Processes & Impacts. 21, 9-18. DOI: 10.1039/C8EM00363G.
- Major-Gabryś, K. (2016). Environmentally friendly foundry moulding and core sands. Archives of Foundry Engineering. Habilitation dissertation.(in Polish).
- Jiang, H., Wang, J., Wu, S., Wang, B. & Wang, Z. (2010). Pyrolysis kinetics of phenol-formaldehyde resin by non-isothermal thermogravimetry. Carbon. 48(2), 352-358. https://doi.org/10.1016/j.carbon.2009.09.036.
- Wang, J., Jiang, H. & Jiang, N. (2009). Study on the pyrolysis of phenol-formaldehyde (PF) resin and modified PF resin. Thermochimica Acta. 496(1-2), 136-142. https://doi.org/10.1016/j.tca.2009.07.012.
- Grochowalski, A., Lassen, C., Holtzer, M., Sadowski, M. & Hudyma, T. (2007). Determination of PCDDs, PCDFs, PCBs and HCB emissions from the metallurgical sector in Poland. Environmental Science and Pollution Research-International. 14, 326-332. https://doi.org/10.1065/espr2006.05.303.
- Holtzer, M, Kmita, A. & Roczniak, A. (2014). New more friendly furfuryl resins. Archives of Foundry Engineering, 14(4SI), 47-50.
- Alonso, M.V., Oliet, M., Domínguez, J.C., Rojo, E. & Rodríguez, F. (2011). Thermal degradation of lignin-phenol-formaldehyde and phenol-formaldehyde resol resins : Structural changes, thermal stability, and kinetics. Journal of Thermal Analysis and Calorimetry. 105(1), 349-356. https://doi.org/10.1007/s10973-011-1405-0.
- Holtzer, M. (2015). Influence of the addition of the reclaimed sand on the quality of castings and harmfulness of the new generation core and moulding sands. (in Polish).
- Kubecki, M. (2016). Determination of selected dangerous air pollutants, generated in the process of thermal decomposition of molding sands with furan resins. AGH University of Science and Technology in Krakow. (in Polish).
- Major-Gabryś, K., Grabarczyk, A. & Dobosz, S.M. (2018). Modification of foundry binders by biodegradable material. Archives of Foundry Engineering. 18, 31-34. DOI: 10.24425/122498.
- Kmita, A. & Hutera, B. (2012). Effect of water glass modification on its viscosity and wettability of quartz grains. Archives of Foundry Engineering. 12(3). DOI: 10.2478/v10266-012-0082-1.
- Kmita, A. & Roczniak, A. (2017). Nanocomposites based on water glass matrix as a foundry binder: chosen physicochemical properties. Archives of Foundry Engineering. 17(1), 93-98. DOI: 10.1515/afe-2017-0017.
- Kmita, A., Drożyński, D., Roczniak, A., Gajewska, M., Marciszko, M., Górecki, K. & Baczmański, A. (2018). Adhesive hybrid nanocomposites for potential applications in moulding sands technology. Part B, Engineering. 146, 124-131. https://doi.org/10.1016/j.compositesb.2018.03.046.
- Kmita, A. & Hutera, B. (2013). Water glass modification and its impact on the mechanical properties of moulding sands. Archives of Foundry Engineering. 13(2), 81-84.
- Kusch, P., Knupp, G., Fink, W., Schroeder-Obst, D., Obst, V. & Steinhaus, J. (2014). Application of pyrolysis–gas chromatography–mass spectrometry for the identification of polymeric materials. LCGC North America. 32(3), 20-217.
- Chuang,, Lei, P., Zhen-hai, S., Bing-liang, L & Ke-Zhi, L. (2019). Preparation, thermal stability and deflection of a density gradient thermally-conductive carbon foam material derived from phenolic resin. Results in Physics. 14, 102448, 1-12. https://doi.org/10.1016/j.rinp.2019.102448.
- Li, X.H., Meng, Y.Z., Zhu, Q. & Tjong, S.C. (2003). Thermal decomposition characteristics of poly(propylene carbonate) using TG/IR and Py-GC/MS techniques. Polymer Degradation and Stability. 81(1), 157-165. https://doi.org/10.1016/S0141-3910(03)00085-5.
- Sobera, M. & Hetper, J. (2003). Pyrolysis – gas chromatography – mass spectrometry of cured phenolic resins. Journal of Chromatography A. 993(1-2), 131-133. https://doi.org/10.1016/S0021-9673(03)00388-1.
- Chen, Y., Chen, Z., Xiao, S. & Liu, H. (2008). A novel thermal degradation mechanism of phenol-formaldehyde type resins. Thermochimica Acta. 476(1-2), 39-43. https://doi.org/10.1016/j.tca.2008.04.013.
- Testoni, F. & Frisina, G. (1990). Qualitative analysis of a commercially available phenol—formaldehyde resin, by static and dynamic headspace analysis using a mass-selective detector. Journal of Chromatography A. 509(1), 101-109. https://doi.org/10.1016/S0021-9673(01)93242-X.
- Phillips, O., Schwartz, J.M. & Kohl, P.A. (2016). Thermal decomposition of poly(propylene carbonate): end-capping, additives, and solvent effects. Polymer Degradation and Stability. 125, 129-139. https://doi.org/10.1016/j.polymdegradstab.2016.01.004.
- Lu, X.L., Zhu, Q. & Meng, Y.Z. (2005). Kinetic analysis of thermal decomposition of poly(propylene carbonate). Polymer Degradation and Stability. 89(2), 282-288. https://doi.org/10.1016/j.polymdegradstab.2004.12.025.
- Laino, T., Tuma, C., Moor, P., Martin, E., Stolz, S. & Curioni, A. (2012). Mechanisms of propylene glycol and triacetin pyrolysis. The Journal of Physical Chemistry A. 116(18), 4602-4609.
- Zhao, Y., Yan, N. & Feng, M.W. (2013). Thermal degradation characteristic of phenol – formaldehyde resins derived from betele infested pine barks. Thermochimica Acta. 555, 46-52. https://doi.org/10.1016/j.tca.2012.12.002.
- Wang, Yujue, Cannon, F. S., Salama, M., Goudzwaard, J. & Furness, J.C. (2007). Characterization of hydrocarbon emissions from green sand foundry core binders by analytical pyrolysis. Environmental Science and Technology, 41(22), 7922-7927.
- Wang, Y., Zhang, Y., Su, L., Li, X., Duan, L., Wang, C. & Huang, T. (2011). Hazardous air pollutant formation from pyrolysis of typical chinese casting materials. Environmental Science & Technology. 45(15), 6539-6544.
- Tiedje, N., Crepaz, R., Eggert, T. & Bey, N. (2010). Emission of organic compounds from mould and core binders used for casting iron, aluminium and bronze in sand moulds. Journal of Environmental Science and Health Part A. 45(14), 1866-1876. https://doi.org/10.1080/10934529.2010.520595.
- Strzemiecka, B., Zięba-Palus, J., Voelkel, T., Lachowicz, T. & Socha, E. (2016). Examination of the chemical changes in cured phenol-formaldehyde resines during storage. Journal of Chromatography A. 1441, 106-115. https://doi.org/10.1016/j.chroma.2016.02.051.
- Dungan, R.S. & Reeves, J.B. (2005). Pyrolysis of foundry sand resins: a determination of organic products by MS. Journal of Environmental Science and Health. 40, 1557-1567. https://doi.org/10.1081/ESE-200060630.
- Hunter, B. (2001). Reference document on best available techniques in the ferrous metals processing industry. Integrated Pollution Prevention and Control (IPPC).
- Bats, C. E., & Scott, W. D. (1977). Decomposition of resin binders and the relationship between the gases formed and the casting surface quality. AFS Transactions. 85(3), 209–226.
- Matsushita, T., Sundaram, D., Belov, I., Dioszegi, A. (2024). Kinetic model for the decomposition rate of the binder in a foundry sand application. Archives of Foundry Engineering. 24(3), 43-49. https://doi.org/24425/afe.2024.151289.
- European Commission. (2015). Best Available Techniques
(BAT) Reference Document for the Propuction of pulp, paper and board. Industrial Emission Directive 2010/75/EU (Intergated Pollution Prevention and Control). https://doi.org/10.2791/370629. - Huang, R., Zhang, B. & Tang, Y. (2016). Application conditions for ester cured alkaline phenolic resin sand. China Foundry. 13(4), 231-237. https://doi.org/10.1007/s41230-016-6022-x.
- Kmita, A., Drozyński, D., Mocek, J., Roczniak, A., Zych, J. & Holtzer, M. (2016). Gas evolution rates of graphite protective coatings in dependence on the applied solvent and kind of atmosphere. Archives of Metallurgy and Materials. 61(4), 2129-2134. DOI: 10.1515/amm-2016-0284.
- Sobczak, J. (2013). Founder’s Guide. Wydawnictwo Stowarzyszenia Technicznego Odlewników Polskich. (in Polish).
- Dańko, J., Dańko, R., Łucarz, M. (2007). Processes and devices for reclamation of used moulding sands.
- Roczniak, A., Kmita, A. (2017). Thermosetting polymers used in foundry to bond the mineral matrix and their impact on the environment. In Z. Czyż & K. Maciąg (Eds.), Current technologies of material technology. Wydawnictwo Naukowe TYGIEL. (in Polish).
- Roczniak, A., Holtzer, M. & Kmita, A. (2018). Research of emission of commercial binders used in ALPHASET technology - Estimated quantitative analysis. Archives of Foundry Engineering. 18(1), 109-114. DOI: 10.24425/118821.
- Chen, Z.Q., Chen, Y.F. & Liu, H.B. (2013). Pyrolysis of phenolic resin by TG-MS and FTIR analysis. Advanced Materials Research. 631-632, 104-109. https://doi.org/10.4028/www.scientific.net/AMR.631-632.104.
- Yu, Z.L, Gao, Y.C., Qin, B, Ma, Z.Y. & Yu, S.H (2024). Revitalizing traditional phenolic resin toward a versatile platform for advanced materials. Accounts of Materials Research. 5(2), 146-159.
- Liang, B., Wang, J., Hu, J., Li, C., Li, R., Liu, Y., Zeng, K., & Yang, G. (2019). TG-MS-FTIR study on pyrolysis behavior of phthalonitrile resin. Polymer Degradation and Stability. 169, 108954, 1-8. https://doi.org/10.1016/j.polymdegradstab.2019.108954.
- Giese, S.R, Roorda, S.C. & Patersson, M.A. (2009). Thermal analysis of phenolic urethane binder and correlation properties. American Foundry Society Transactions. 117, 355-366.
- Otero, M., Díez, C., Calvo, L.F., García, A.I. & Morán, A. (2002). Analysis of the co-combustion of sewage sludge and coal by TG-MS. Biomass and Bioenergy. 22(4), 319-329. https://doi.org/10.1016/S0961-9534(02)00012-0.
- Wang, Y.X., Wang, C.G., Wu, J.W. & Jing, M. (2007). High-temperature DSC study of polyacrylonitrile precursors during their conversion to carbon fibers. Journal of Applied Polymer Science. 106(3), 1787-1792. https://doi.org/10.1002/app.26862.
- Wang, S., Xing, X., Wang, Y., Wang, W. & Jing, X. (2017). Influence of poly (dihydroxybiphenyl borate) on the curing behaviour and thermal pyrolysis mechanism of phenolic resin. Polymer Degradation and Stability. 144, 378-391. https://doi.org/10.1016/j.polymdegradstab.2017.08.034.
- Shuttleworth, P.S., Budarin, V., White, R.J., V.M., G., Luque, R. & Clark, J.H. (2013). Molecural- level understanding of the carbonization of polysaccharides. Chemistry – A European Journal. 19, 9351-9357. https://doi.org/10.1002/chem.201300825.
- Kissinger, H.E. (1957). Reaction kinetics in differential thermal analysis. Analytical Chemistry. 29(11), 1702-1706. https://doi.org/10.1021/ac60131a045.
- Akahira, T. & Sunose, T. (1971). Joint Convention of Four Electtical Institutes. Research Reports of Chiba Institute of Technology. 16, 22-31.