Details
Title
Corrosion Behaviour of 316 Stainless Steel in Molten CaCl2-CaF2-CaO Salts at High TemperatureJournal title
Archives of Foundry EngineeringYearbook
Accepted articlesVolume
Accepted articlesAuthors
Affiliation
Palimąka, P. : AGH University of Krakow, Poland ; Leszczyńska-Madej, B. : AGH University of Krakow, PolandKeywords
Molten salts ; SS316 corrosion ; CO2 capture in molten saltsDivisions of PAS
Nauki TechnicznePublisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Tang, Z. & Tao, W.Q. (2023). Strength analysis of molten salt tanks for concentrating solar power plants. Energy Storage and Saving. 2(4), 571-577. DOI: 10.1016/j.enss.2023.08.003.
- Russo, V., Petroni, G., Rovense, F., Giorgetti, M., Napoli, G., Giorgi, G. & Gaggioli, W. (2025). Experimental testing results on critical components for molten salt-based CSP systems. 18(1), 198, 1-21. DOI: 10.3390/en18010198.
- Serp, J., Allibert, M., Beneš, O., Delpech, S., Feynberg, O., Ghetta, V., Heuer, D., Holcomb, D., Ignatiev, W., Kloosterman, J.L., Luzzi, L., Merle-Lucotte, E., Uhlíř, J., Yoshionka, R. & Zhimin, D. (2014). The molten salt reactor (MSR) ingeneration IV: Overview and perspectives. Progress in Nuclear Energy. 77, 308-319. https://doi.org/10.1016/j.pnucene.2014.02.014.
- Noori-Kalkhoran, O., Jain, L. & Merk, B. (2024). On the use of a chloride or fluoride salt fuel system in advanced molten salt reactors, part 3; radiation damage. Energies (Basel). 17(19), 4772, 1-14. DOI: 10.3390/en17194772.
- Arcos, C., Guerra, C., Ramos-Grez, J.A. & Sancy, M. (2023). Ni-Al bronze in molten carbonate manufactured by LPBF: effect of porosity design on mechanical properties and oxidation. 16(10), 3893, 1-15. DOI: 10.3390/ma16103893.
- Quadros, J.D., Khan, S.A., Mohin, M., Mogul, Y.I., Aabid, A., Baig, M. & Ahmed, O.S. (2023). Heat transfer of Ca (NO3)2-KNO3 molten salt mixtures for austempering and martempering processes of steels. ACS Omega. 9(15), 17266-17275. DOI: 10.1021/acsomega.3c10262.
- Zhang, J., Yan, H., Liu, Z., Guo, S., Yang, Y., Yang, G., Xia,R., Hu, M. & Li, L. (2024). Progress in research and application of molten salt electrolysis for titanium extraction. Journal of Electrochemical Society. 171(8), 082502, 1-16. DOI: 10.1149/1945-7111/ad6d95.
- Pietrzyk, S., Palima̧ka, P. & Gȩbarowski, W. (2014). The effect of liquid aluminium on the corrosion of carbonaceous materials. Archives of Metallurgy and Materials. 59(2), 545-550. DOI: 10.2478/amm-2014-0090.
- Palimąka, P. (2020). Thermal cleaning and melting of fine aluminium alloy chips. Archives of Foundry Engineering. 20(4), 91-96. DOI: 10.24425/afe.2020.133353.
- Zhu, M., Zeng, S., Zhang, H., Li, J. & Cao, B. (2018). Electrochemical study on the corrosion behaviors of 316 SS in HITEC molten salt at different temperatures. Solar Energy Materials and Solar Cells. 186, 200-207 DOI: 10.1016/J.SOLMAT.2018.06.044.
- Abu-Warda, N., García-Rodríguez, S., Torres, B., Utrilla, M.V. & Rams, J. (2024). Effect of Molten Salts Composition on the Corrosion Behavior of Additively Manufactured 316L Stainless Steel for Concentrating Solar Power. Metals (Basel). 14(6), 639, 1-18. DOI: 10.3390/met14060639.
- Sandhi, K.K. & Szpunar, J. (2021). Analysis of corrosion of hastelloy-N, alloy x750, SS316 and SS304 in molten salt high-temperature environment. Energies (Basel). 14(3), 543, 1-10. DOI: 10.3390/en14030543.
- Feng, J., Gao, J., Mao, L., Bedell, R. & Liu, E. (2024). Modeling the impact of grain size on corrosion behavior of Ni-based alloys in molten chloride salt via cellular automata. Metals . 14(8), 931, 1-12. DOI: 10.3390/met14080931.
- Kettrakul, P., Siripongsakul, T., Kanjanaprayut, N., Wiman, P., Promdirek, P. (2023). Effect of Si addition in NiCrAl coating on corrosion in molten nitrate salt. Retrieved January 28, 2025, from https://doi.org/10.21203/rs.3.rs-3282513/v1.
- Olsen, E. & Tomkute, V. (2013). Carbon capture in molten salts. Energy Science & Engineering. 1(3), 144-150. DOI: 10.1002/ese3.24.
- Tomkute, V., Solheim, A. & Olsen, E. (2014). CO2 capture by CaO in molten CaF2-CaCl2: Optimization of the process and cyclability of CO2 capture. Energy and Fuels. 28(8), 5345-5353. DOI: 10.1021/ef5010896.
- Palimąka, P., Pietrzyk, S., Balcerzak, M., Żaba, K.,Leszczyńska-Madej, B. & Jaskowska-Lemańska, J. (2024). Evaluation of the wear of Ni 200 alloy after long-term carbon capture in molten salts process. Materials. 17(24), 6302, 1-25. DOI: 10.3390/ma17246302.
- Ding, W., Bonk, A. & Bauer, T. (2018). Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review. Frontiers of Chemical Science and Engineering. 12, 564-576. DOI: 10.1007/s11705-018-1720-0.
- Ma, H. (2003). Corrosion of Metallic Materials in High-temperature Chloride Salt Environment. Level of Thesis, Dalian University of Technology, Dalian, China.
- Wang, M., Song, Z., Huihui, Z. Zhu, M., Chengxin, L. & Boshuai. L. (2020). Corrosion behaviors of 316 stainless steel and Inconel 625 alloy in chloride molten salts for solar energy storage. High Temperature Materials and Processes. 39(1), 340-350. DOI: 10.1515/htmp-2020-0077.
- Wei, Y., La, P., Zheng, Y., Zhan, F., Yu, H., Yang, P., Zhu, M., Bai, Z. & Gao, Y. (2025). Review of molten salt corrosion in stainless steels and superalloys. 15(3), 237, 1-33. DOI: 10.3390/cryst15030237.
- HSC Chemistry v 7.0, Outotec Research