Details

Title

The Effect of Heat Treatment on the Microstructure and Hardness of an Austenitic Matrix of High-Manganese Cast Steel with the Addition of Molybdenum

Journal title

Archives of Foundry Engineering

Yearbook

Accepted articles

Volume

Accepted articles

Authors

Affiliation

Tęcza, G. : AGH University of Krakow, Poland ; Mordyl, N. : AGH University of Krakow, Poland ; Bracka-Kęsek, K. : AGH University of Krakow, Poland

Keywords

Microstructure ; Microhardness ; Austenit ; Alloy cementite ; Solution heat treatment ; High-manganese cast steel

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  • Tęcza, G. & Garbacz Klempka, A. (2016). Microstructure of cast high-manganese steel containing titanium. Archives of Foundry Engineering. 16(4), 163-168. DOI: 1515/afe-2016-0103.
  • Dziubek, M., Rutkowska-Gorczyca, M., Dudziński, W. & Grygier, D. (2022). Investigation into changes of microstructure and abrasive wear resistance occurring in high manganese steel X120Mn12 during isothermal annealing and re-austenitisation process. Materials. 15(7), 2622, 1-16. DOI: 3390/ma15072622.
  • Mohammadnezhad, M., Javaheri, V. & Naseri, M. (2013) Effect of the molybdenum on the microstructural and mechanical properties of hadfield austenitic manganese steel. In the Second International Iranian Metallurgical Engineering and Iranian Fundrymen Scientific Society, 30-31 October 2013 (Vol. 12816, pp. 1-7). Semnan, Iran.
  • Dziubek, M., Rutkowska-Gorczyca, M. & Grygier, D. (2023). The effect of the austenitisation temperature for the two-stage heat treatment of high-manganese steels on its wear resistance under abrasive conditions. Tribologia. 305(3), 19-29. DOI: 10.5604/01.3001.0053.9426.
  • Kalandyk, B., Tęcza, G., Zapała, R. & Sobula, S. (2015). Cast High-Manganese Steel – the Effect of Microstructure on Abrasive Wear Behaviour in Miller Test. Archives of Foundry Engineering. 15(2), 35-38. DOI: 10.1515/afe-2015-0033.
  • Gürol, U. & Can Kurnaz, S. (2020). Effect of carbon and manganese content on the microstructure and mechanical properties of high manganese austenitic steel. Journal of Mining and Metallurgy Section B Metallurgy. 56(2), 171-182. DOI: 2298/JMMB191111009G.
  • Fuoco, R., Todorov, D., Cavalcanti, A.H. & Santos, N.L. (2012) Effect of chemical composition on the carbide reprecipitation kinetics of hadfield austenitic manganese steel. Transactions of the American Foundry Society. 120, 507-522.
  • Tęcza, G. & Sobula, S. (2013). Effect of heat treatment on change microstructure of cast high-manganese hadfield steel with elevated chromium content. Archives of Foundry Engineering. 13(3), 67-70.
  • Berkowski, L., Borowski, J. & Rybak, Z. (2009). Strengthening of the steel after heat treating with the matrix of different structure. Journal of Research and Application in Agriculture Engineering. 54(2), 9-15. (in Polish)
  • Olawale, O., Ibitoye, S. & Shittu, M.D. (2013). Workhardening behaviour and microstructural analysis of failed austenitic manganese steel crusher jaws. Materials Research. 16(6), 1274-1281. DOI: 1590/S1516-14392013005000144.
  • Ham, Y.S., Kim, J.T., Kwak, S.Y., Choi, J.K. & Yoon, W.Y. (2010). Critical cooling rate on carbide precipitation during quenching of austenitic manganese steel. China Foundry. 7(2), 178-182.
  • Jabłońska, M., Śmiglewicz, A., Niewielski, G. & Hetmańczyk, M. (2011). Heat treatment of high manganese type X57MnAl27-5 austenitic steel. IOP Conference Series Materials Science and Engineering. 22(1), 012014, 1-6. DOI: 10.1088/1757-899X/22/1/012014.
  • Tęcza, G. & Zapała, R. (2018). Changes in impact strength and abrasive wear resistance of cast high manganese steel due to the formation of primary titanium carbides. Archives of Foundry Engineering. 18(1), 119-122. DOI: 24425/118823.
  • Tsakiris, V. & Edmonds, D.V. (1999). Martensite and deformation twinning in austenitic steels. Materials Science and Engineering. 273-275, 430-436. DOI: 10.1016/S0921-5093(99)00322-6.
  • Karaman, I., Sehitoglu, H., Gall, K., Chumlyakov, Y.I. & Maier, H.J. (2000). Deformation of single crystal Hadfield steel by twinning and slip. Acta Materialia. 48(6), 1345-1359. DOI: 1016/S1359-6454(99)00383-3.
  • Bańkowski, D., Młynarczyk, P. S., Depczyński, W. & Bolanowski, K. C. (2024). The effect of work hardening on the structure and hardness of hadfield steel. Archives of Foundry Engineering. 24(1), 14-20. DOI: 24425/afe.2024.149246.
  • Stradomski, Z. (2010). Microstructure in wear issues of wear-resistant steels. Częstochowa: Wydawnictwo Politechniki Częstochowskiej. (in Polish).
  • Tęcza, G. & Głownia, J. (2015). Resistance to abrasive wear and volume fraction of carbides in cast high-manganese austenitic steel with composite structure. Archives of Foundry Engineering. 15(4), 129-133. DOI: 10.1515/afe-2015-0092.
  • Maouche, H., Hadji, A. & Bouhamla, K. (2016). Effect of inoculation by molybdenum and nickel on hardening phenomenon and wear behavior of high manganese steel. Metallurgical and Mining Industry. 3, 75-82.
  • Tęcza, G. (2022). Changes in microstructure and abrasion resistance during miller test of hadfield high-manganese cast steel after the formation of vanadium carbides in alloy matrix. 15(3), 1021, 1-11. DOI: 10.3390/ma15031021.
  • Tęcza, G. (2021). Changes in abrasive wear resistance during miller test of high-manganese cast steel with niobium carbides formed in the alloy matrix. Applied Sciences. 11(11), 4794, 1-10. DOI: 10.3390/app11114794.

Date

10.07.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.155351
×