Details
Title
Establishment of Heat Balance Equation and Baking Efficiency Analysis of Heat Storage Steel Ladle Baking System Based on Different GasesJournal title
Archives of Foundry EngineeringYearbook
Accepted articlesAuthors
Affiliation
Bai, Xiang : University of Science and Technology Liaoning, School of Civil Engineering, China ; He, Jia yang : University of Science and Technology Liaoning, School of Civil Engineering, China ; Mao, Hujun : University of Science and Technology Liaoning, School of Civil Engineering, China ; Liu, Guang qiang : University of Science and Technology Liaoning, School of Civil Engineering, ChinaKeywords
Thermal storage steel ladle baking ; Heat balance equation ; Combustion efficiency ; Artificial gasDivisions of PAS
Nauki TechnicznePublisher
The Katowice Branch of the Polish Academy of SciencesBibliography
- Zhang, H., Zhou, P. & Yuan, F. (2021). Effects of ladle lid or online preheating on heat preservation of ladle linings and temperature drop of molten steel. Energy. 214, 118896, 1-11. DOI: 10.1016/j.energy.2020.118896.
- Chen, C-H. & Ronney, P.D. (2011). Three - dimensional effects in counterflow heat - recirculating combustors. Proceedings of the Combustion Institute. 33(2), 3285-3291. https://doi.org/10.1016/j.proci.2010.06.081.
- Li, G., Liu, J., Jiang, G. & Liu, H. (2015). Numerical simulation of temperature field and thermal stress field in the new type of ladle with the nanometer adiabatic material. Advances in Mechanical Engineering. 7(4), 1-13. https://doi.org/10.1177/1687814015575988.
- Nemitallah, M.A., Habib, M.A., Badr, H.M., Said, S.A., Jamal, A., Ben-Mansour, R., Mokheimer, E.M.A. & Mezghani, K. (2017). Oxy-fuel combustion technology: current status, applications, and trends. International Journal of Energy Research. 41(12), 1670-1708. https://doi.org/10.1002/er.3722.
- Schaffel-Mancini, N., Mancini, M., Szlek, A. & Weber, R. (2010). Novel conceptual design of a supercritical pulverized coal boiler utilizing high - temperature air combustion (HTAC) technology. Energy. 35(7), 2752-2760. https://doi.org/10.1016/j.energy.2010.02.014.
- Suda, T., Takafuji, M., Hirata, T., Yoshino, M. & Sato, J. (2002). A study of combustion behavior of pulverized coal in high - temperature air. Proceedings of the Combustion Institute. 29(1), 503-509. https://doi.org/10.1016/S1540-7489(02)80065-7.
- Weber, R., Gupta, A.K. & Mochida, S. (2020). High - temperature air combustion (HiTAC): how it all started for applications in industrial furnaces and prospects. Applied energy. 278, 115551. DOI: 10.1016/j.apenergy.2020.115551.
- Weber, R., Smart, J.P., vd Kamp, W. (2005). On the (MILD) combustion of gaseous, liquid, and solid fuels in high temperature preheated air. Proceedings of the combustion institute. 30(2), 2623-2629. https://doi.org/10.1016/j.proci.2004.08.101.
- Weihong, Y. & Blasiak, W. (2004). Combustion performance and numerical simulation of a high - temperature air - LPG flame on a regenerative burner. Scandinavian Journal of Metallurgy. 33, 113-120. https://doi.org/10.1111/j.1600-0692.2004.00675.x.
- Lille, S., Blasiak, W., Mo¨ rtberg, M., Dobski, T. & Yang, W. (2002). Heat Flux Evaluation in a Test Furnace Equipped With High - Temperature Air Combustion (HTAC) Technique[C]. In International Joint Power Generation Conference, 24-26 June 2002 (pp.643 – 649). Scottsdale, Arizona, USA.
- Sánchez, M., Cadavid, F. & Amell, A. (2013). Experimental evaluation of a 20 kW oxygen - enhanced self - regenerative burner operated in flameless combustion mode. Applied Energy. 111, 240 - 246. https://doi.org/10.1016/j.apenergy.2013.05.009.
- Haworth, D.C. (2010). Progress in probability density function methods for turbulent reacting flows. Progress in Energy and Combustion Science. 36(2), 168-259. https://doi.org/10.1016/j.pecs.2009.09.003.
- Ma, L., Naud, B. & Roekaerts, D. (2016). Transported PDF modeling of ethanol spray in hot - diluted coflow flame. Flow, Turbulence, and Combustion. 96, 469-502. https://doi.org/10.1007/s10494-015-9623-3.
- Lygidakis, G.N. & Nikolos, I.K. (2012). Using the finite - volume method and hybrid unstructured meshes to compute radiative heat transfer in 3-D geometries. Numerical Heat Transfer, Part B: Fundamentals. 62, 289-314. https://doi.org/10.1080/10407790.2012.707012.
- Moradi, J., Gharehghani, A. & Mirsalim, M. (2020). Numerical investigation on the effect of oxygen in combustion characteristics and to extend low load operating range of a natural-gas HCCI engine. Applied Energy. 276, 115516, 1-14. DOI:10.1016/j.apenergy.2020.115516.
- Hosseini, A. A., Ghodrat, M., Moghiman, M. & Pourhoseini, S. H. (2020). Numerical study of inlet air swirl intensity effect of a Methane - Air Diffusion Flame on its combustion characteristics. Case Studies in Thermal Engineering. 18, 100610. https://doi.org/10.1016/j.csite.2020.100610.
- Wang, S., Wen, Z., Dou, R., Xiao, Y., Guan, Y. & Liu, X. (2022). Numerical study on the mixing process of hot desulfurization slag and converter steel slag. Case Studies in Thermal Engineering. 40, 102561, 1-13. https://doi.org/10.1016/j.csite.2022.102561.
- Qi, F., Shan, J., Li, B. & Baleta, J.. (2020). Numerical study on ladle baking process of oxy - fuel combustion. Thermal Science. 24, 3511-3520. https://doi.org/10.2298/TSCI200318272Q.
- Su, F., Fang, L., Kang, Z. & Zhu, H. (2023). Numerical simulation om heat transfer of multi - layer ladle in empty and heavy condition. Frontiers in Heat and Mass Transfer. 20(1), 1-9. DOI:10.5098/hmt.20.14.
- Hou, A., Jin, S., Harmuth, H. & Gruber, D. (2018). A method for steel ladle lining optimization applying thermomechanical modeling and taguchi approaches. The Journal of The Minerals, Metals & Materials Society (TMS). 70, 2449-2456. https://doi.org/10.1007/s11837-018-3063-1.