Szczegóły

Tytuł artykułu

Effect of fewer strands casting on molten steel flow, temperature distribution, and transition billet length in a 12-strand tundish

Tytuł czasopisma

Archives of Foundry Engineering

Rocznik

Accepted articles

Autorzy

Afiliacje

Zhang, Yali : Lvliang University, China ; Song, Jintao : Taiyuan University of Technology, China ; Chen, Chao : Taiyuan University of Technology, China

Słowa kluczowe

Fewer strand casting ; 12-strand tundish ; Transition length ; Grade change ; Temperature distribution

Wydział PAN

Nauki Techniczne

Wydawca

The Katowice Branch of the Polish Academy of Sciences

Bibliografia

  • Szekely, J., Ilegbusi, O.J. (1989). The physical and mathematical modeling of tundish operations. Heidelberg: Springer.
  • Sahai, Y. (2007). Tundish technology for clean steel production. World Scientific.
  • Geng, M., Wang, T. & Chen, C. (2024). Assessment of the volume effect and application of an improved tracer in physical model of a single-strand bare tundish. Metallurgical and Materials Transactions B. 55(5), 4121-4131. https://doi.org/10.1007/s11663-024-03308-7.
  • Cwudziński, A., Bul'ko, B. & Demeter, P. (2024). Numerical and physical modeling of steel flow behavior in the two strand tundish during nonconventional pouring conditions. Archives of Foundry Engineering. 24(4), 116-125. https://doi.org/10.24425/afe.2024.151319.
  • Chen, L., Chen, J.S., Li, Y.Q., Wang, S.B. & Chen, C. (2020). On the ladle shroud design and mis-alignment effects on the fluid flow in a metallurgical tundish- a CFD model study. In E3S Web of Conferences. 185, 04069, 1-4. http://doi.org/10.1051/e3sconf/202018504069.
  • Cao, J., Li, Y., Lin, W., Che, J., Zhou, F., Tan, Y., Li, D., Dang, J. & Chen, C. (2023). assessment of inclusion removal ability in refining slags containing Ce2O3. Crystals. 13(2), 202, 1-30. https://doi.org/10.3390/cryst13020202.
  • Wang, T., Chen, C., Tao, X., Wang, J., Geng, M., Song, J., Li, L., Fan, J. & Lin, W. (2024). Impact of slag layer on macroscopic flow inside tundish and velocity near slag-steel interface. The Chinese Journal of Process Engineering. 24(9), 1058-1069. http://doi.org/12034/j.issn.1009-606X.224058.
  • Wang, T., Wang, J., Chen, C., Chen, L., Geng, M., Song, J., Fan, J. & Lin, W. (2024). Physical and numerical study on right side and front side gas blowing at walls in a single-strand tundish. Steel Research International. 95(9), 2400037, 1-22. https://doi.org/10.1002/srin.202400037.
  • Chen, C., Ni, P., Jonsson, L.T.I., Tilliander, A., Cheng, G. & Jönsson, P. G. (2016). A model study of inclusions deposition, macroscopic transport, and dynamic removal at steel-slag interface for different tundish designs. Metallurgical and Materials Transactions B. 47(2), 1916-1932. https://doi.org/10.1007/s11663-016-0637-6.
  • Chen, C., Cheng, G.G., Yang, H.K. & Hou, Z.B. (2011). Physical modeling of fluid flow characteristics in a delta shaped, four-strand continuous casting tundish with different flow control devices. Advanced Materials Research. 284, 1071-1079. https://doi.org/10.4028/www.scientific.net/AMR.284-286.1071.
  • Zhao, S., Zhu, S., Ge, Y., Wang, J., Xu, D., Li, Z. & Chen, C. (2023). Simulation of fluid flow and inclusion removal in five-flow t-type tundishes with porous baffle walls. Metals. 13(2), 215, 1-15. https://doi.org/10.3390/met13020215.
  • Zhao, S., Lu, Z., Zhang, Z., Ma, Z., Cao, Y. & Tang, H. (2024). Formation factors of confluence vortex in double nozzle ladle at end of teeming. Iron and Steel. 59(05), 71-79. https://doi.org/10.13228/j.boyuan.issn0449-749x.20230579. (in Chinese)
  • Zhang, J., Li, J. & Yang, S. (2014). Optimization of fluid flow in a twelve-strand continuous casting tundish with two strands closed. Metalurgia International. 19(4), 10-13.
  • Zhang, L. (2005). Fluid flow, heat transfer and inclusion motion in a four‐strand billet continuous casting tundish. Steel Research International. 76(11), 784-796. https://doi.org/10.1002/srin.200506097.
  • Mishra, S.K., Jha, P.K., Sharma, S.C. & Ajmani, S.K. (2012). Effect of blockage of outlet nozzle on fluid flow and heat transfer in continuously cast multistrand billet caster tundish. Canadian Metallurgical Quarterly. 51(2), 170-183. https://doi.org/10.1179/1879139511Y.0000000032.
  • Sengupta, A., Mishra, P., Singh, V., Mishra, S., Jha, P.K., Ajmani, S.K. & Sharma, S.C. (2013). Physical modelling investigation of influence of strand blockage on RTD characteristics in a multistrand tundish. Ironmaking Steelmaking. 40(3), 159-166. https://doi.org/10.1179/1743281212Y.0000000054.
  • Merder, T. (2014). Numerical investigation of the hydrodynamic conditions in a multi-strand CC tundish with closed outlets. Archives of Metallurgy and Materials. 59(3), 887-892. https://doi.org/10.2478/amm-2014-0150.
  • Wang, X., Wang, S., Hu, H., Xie, X., Wu, C., Chen, D. & Long, M. (2023). Flow behavior of liquid steel in fewer strands casting of six-strand bloom tundish. Metals. 13(4), 706, 1-15. https://doi.org/10.3390/met13040706.
  • Fan, J., Li, Y., Chen, C., Ouyang, X., Wang, T. & Lin, W. (2022). Effect of uniform and non-uniform increasing casting flow rate on dispersion and outflow percentage of tracers in four strand tundishes under strand blockage conditions. Metals. 12(6), 1016, 1-28. https://doi.org/10.3390/met12061016.
  • Song, J., Luo, Y., Li, Y., Guo, Z., Wang, T., Geng, M., Lin, W., Fan, J. & Chen, C. (2024). Comparison of fluid flow and tracer dispersion in four-strand tundish under fewer strand casting and sudden blockage of strand conditions. 14(5), 571, 1-32. https://doi.org/10.3390/met14050571.
  • Ramstorfer, F. & Delane de Souza, M. (2022). Reduction of incompatible intermixing of different steel grades in continuous casting by optimizing the casting sequence. International Journal of Cast Metals Research. 35(3), 43-50. https://doi.org/10.1080/13640461.2022.2078550.
  • Tsai, M.C. & Green, M. J. (1991). A three-dimensional concurrent numerical simulation of molten steel behavior and chemical transition at inland steel's No. 2 caster tundish. In Steelmaking Conference Proceedings. 74, 501-504.
  • Yeh, J.L., Hwang, W.S. & Chou, C.L. (1993). The development of a mathematical model to predict composition distribution in casting slab and intermix slab length during ladle changeover period and its verification by physical model. ISIJ International. 33(5), 588-594. https://doi.org/10.2355/isijinternational.33.588.
  • Chen, H.S. & Pehlke, R.D. (1996). Mathematical modeling of tundish operation and flow control to reduce transition slabs. Metallurgical and Materials Transactions B. 27(5), 745-756. https://doi.org/10.1007/BF02915603.
  • Guarneros, J., Morales, R.D. & Gutierrez, E. (2023). Optimized fluid flow control system for a tundish used in frequent steel grade change operations. Steel Research International. 94(6), 2200809, 1-17. https://doi.org/10.1002/srin.202200809.
  • Xu, D., Rogler, J.P., Heaslip, L.J., Dorricott, J. D., Foss, R. (2002). Dynamic flow behavior in the tundish: optimization of grade transitions. In 60 th Electric Furnace Conference, 10-13 November 2002 (pp.745-754). San Antonio, Texas, USA.
  • Amorim, L.L., Silva, C.A., Resende, A.D., Silva, I.A. & Oliveira, M.J. (2018). A study of intermix in a six-strand billet caster. Metallurgical and Materials Transactions A. 49, 6308-6324. https://doi.org/10.1007/s11661-018-4915-6.
  • Cwudziński, A., Pieprzyca, J. & Merder, T. (2023). Numerical and physical modeling of liquid steel asymmetric behavior during non-isothermal conditions in a two-strand slab tundish-“Butterfly Effect”. Materials. 16(21), 6920, 1-18. https://doi.org/10.3390/ma16216920.
  • Burns, M.T., Schade, J., Brown, W.A. & Minor, K.R. (1992). Transition model for armco steel's ashland slab caster. Iron steelmaker. 19(11), 35-39. ISSN: 0275-8687.
  • Song, S., Sun, Y. & An, H. (2023). Numerical modeling of grade mixing and inclusion entrapment in eight strand billet tundish. Metallurgical Research & Technology. 120(1), 112-127. https://doi.org/10.1051/metal/2023006.
  • Song, S., Sun, Y. & Chen, C. (2024). Numerical simulation of macro-segregation phenomena in transition blooms with various carbon contents. 14(3), 263, 1-19. https://doi.org/10.3390/met14030263.
  • Song, S., Sun, Y., Zhou, W., Yang, J. & Yang, W. (2024). The effect of steel grade casting sequence on the length of transition bloom. Metallurgical and Materials Transactions B. 55(3), 1795-1811. https://doi.org/10.1007/s11663-024-03067-5.
  • Ren, M., Zhi, J., Fan, Z., Wang, R., Chen, Y. & Yang, J. (2023). Influence of ladle exchange on inclusions in transition slabs of continuous casting for automotive exposed panel steel. Metals. 13(2), 404, 1-18. https://doi.org/10.3390/met13020404.
  • Hou, Z., Cheng, G., Wu, C. & Chen, C. (2012). Time-series analysis technologies applied to the study of carbon element distribution along casting direction in continuous-casting billet. Metallurgical and materials transactions B. 43(5). 1517-1529. https://doi.org/10.1007/s11663-012-9732-5.
  • He, F., Wang, H. & Zhu, Z. (2019). Numerical investigation of effect of casting speed on flow characteristics of molten steel in multistrand tundish. ISIJ International. 59(7), 1250-1258. https://doi.org/10.2355/isijinternational.ISIJINT-2018-835.

Data

23.07.2025

Typ

Article

Identyfikator

DOI: 10.24425/afe.2025.155359 ; eISSN 2299-2944
×