Details

Title

Corrosion Studies of Selective Laser Melting Printed AlSi10Mg Parts

Journal title

Archives of Foundry Engineering

Yearbook

Accepted articles

Authors

Affiliation

Gadlegaonkar, Nagareddy : Department of Mechanical Engineering, G.H. Raisoni College of Engineering & Management, Wagholi, Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India ; Bansod, Premendra J. : Department of Mechanical Engineering, G.H. Raisoni College of Engineering & Management, Wagholi, Affiliated to Savitribai Phule Pune University, Pune, Maharashtra, India ; L, Avinash : Nitte (Deemed to be University), Nitte Meenakshi Institute of Technology (NMIT), Department of Mechanical Engineering, Bengaluru, 560064, India ; Bhole, Krishnakant : School of Design, Presidency University, Bangalore – 560064, India ; G C, Manjunath Patel : Department of Mechanical Engineering, Sahyadri College of Engineering & Management, Mangaluru, Visvesvaraya Technological University, Belagavi 590018, Karnataka, India ; Reddy, Nagaraja C. : Department of Mechanical Engineering, Bangalore Institute of Technology, Bengaluru – 560004, Karnataka, India ; Rao, Srilatha : Nitte (Deemed to be University), Nitte Meenakshi Institute of Technology (NMIT), Department of Chemistry, Bengaluru, 560064, India

Keywords

AlSi10Mg ; SLM Process ; Taguchi analysis ; Corrosion ; SEM

Divisions of PAS

Nauki Techniczne

Publisher

The Katowice Branch of the Polish Academy of Sciences

Bibliography

  1. Czerwinski, F. (2020). Thermal stability of aluminum alloys. Materials. 13(15), 3441, 1-49. https://doi.org/10.3390/ma13153441.
  2. Michi, R.A., Plotkowski, A., Shyam, A., Dehoff, R.R. & Babu, S. S. (2022). Towards high-temperature applications of aluminium alloys enabled by additive manufacturing. International Materials Reviews. 67(3), 298-345. https://doi.org/10.1080/09506608.2021.1951580.
  3. Fang, Z., Cao, J., Guan, Y. (2020). Corrosion control technologies for aluminium alloy vessel. Springer Singapore.
  4. Davis, J.R. (1999). Corrosion of aluminium and aluminium alloys. Asm International.
  5. Ahmed, M.M., El-Sayed Seleman, M.M., Fydrych, D. & Çam, G. (2023). Friction stir welding of aluminium in the aerospace industry: the current progress and state-of-the-art review. Materials. 16(8), 2971, 1-33. https://doi.org/10.3390/ma16082971.
  6. Taylor, M.P., Chen, J.J., Young, B.R. (2013). Control for aluminum production and other processing industries. CRC Press.
  7. Hadad, M. & Hadi, M. (2013). An investigation on surface grinding of hardened stainless steel S34700 and aluminum alloy AA6061 using minimum quantity of lubrication (MQL) technique. The International Journal of Advanced Manufacturing Technology. 68, 2145-2158. https://doi.org/10.1007/s00170-013-4830-3.
  8. Deyab, M.A., Abd El-Rehim, S.S., Hassan, H.H. & Shaltot, A.M. (2020). Impact of rare earth compounds on corrosion of aluminium alloy (AA6061) in the marine water environment. Journal of Alloys and Compounds. 820, 153428, 1-7. https://doi.org/10.1016/j.jallcom.2019.153428.
  9. Fathi, P., Rafieazad, M., Duan, X., Mohammadi, M. & Nasiri, A. M. (2019). On microstructure and corrosion behaviour of AlSi10Mg alloy with low surface roughness fabricated by direct metal laser sintering. Corrosion Science. 157, 126-145. https://doi.org/10.1016/j.corsci.2019.05.032.
  10. Liao, J., Hotta, M. & Mori, Y. (2012). Improved corrosion resistance of a high-strength Mg–Al–Mn–Ca magnesium alloy made by rapid solidification powder metallurgy. Materials Science and Engineering: A, 544, 10-20. https://doi.org/10.1016/j.msea.2012.02.046.
  11. Swamy, P.K., Mylaraiah, S., Gowdru Chandrashekarappa, M.P., Lakshmikanthan, A., Pimenov, D.Y., Giasin, K. & Krishna, M. (2021). Corrosion behaviour of high-strength Al 7005 alloy and its composites reinforced with industrial waste-based fly ash and glass fibre: comparison of stir cast and extrusion conditions. Materials. 14(14), 3929, 1-17. https://doi.org/10.3390/ma14143929.
  12. Tofail, S.A., Koumoulos, E.P., Bandyopadhyay, A., Bose, S., O’Donoghue, L. & Charitidis, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials Today. 21(1), 22-37. https://doi.org/10.1016/j.mattod.2017.07.001.
  13. Gadlegaonkar, N., Bansod, P.J., Lakshmikanthan, A. & Bhole, K. (2025). A Review on additively manufactured AlSi10Mg alloy: mechanical, tribological, and microstructure properties. Journal of Mines, Metals and Fuels. 87-101.
  14. Wang, C., Tan, X.P., Tor, S.B. & Lim, C.S. (2020). Machine learning in additive manufacturing: State-of-the-art and perspectives. Additive Manufacturing. 36, 101538, 1-20. https://doi.org/10.1016/j.addma.2020.101538.
  15. Pelevin, I.A., Nalivaiko, A.Y., Ozherelkov, D.Y., Shinkaryov, A.S., Chernyshikhin, S.V., Arnautov, A.N., Zmanovsky, S.V. & Gromov, A.A. (2021). Selective laser melting of Al-based matrix composites with Al2O3 reinforcement: Features and advantages. Materials. 14(10), 2648, 1-17. https://doi.org/10.3390/ma14102648.
  16. Fang, Z.C., Wu, Z.L., Huang, C.G. & Wu, C.W. (2020). Review on residual stress in selective laser melting additive manufacturing of alloy parts. Optics & Laser Technology. 129, 106283, 1-15. https://doi.org/10.1016/j.optlastec.2020.106283.
  17. Ren, S., Chen, Y., Liu, T., & Qu, X. (2019). Effect of build orientation on mechanical properties and microstructure of Ti-6Al-4V manufactured by selective laser melting. Metallurgical and Materials Transactions A. 50(9), 4388-4409. https://doi.org/10.1007/s11661-019-05322-w.
  18. Li, C., Liu, J.F., Fang, X.Y. & Guo, Y.B. (2017). Efficient predictive model of part distortion and residual stress in selective laser melting. Additive Manufacturing. 17, 157-168. https://doi.org/10.1016/j.addma.2017.08.014.
  19. Zhao, L., Macías, J.G.S., Dolimont, A., Simar, A. & Rivière-Lorphèvre, E. (2020). Comparison of residual stresses obtained by the crack compliance method for parts produced by different metal additive manufacturing techniques and after friction stir processing. Additive Manufacturing. 36, 101499, 1-13. https://doi.org/10.1016/j.addma.2020.101499.
  20. Lou, X., Othon, M.A. & Rebak, R.B. (2017). Corrosion fatigue crack growth of laser additively-manufactured 316L stainless steel in high temperature water. Corrosion science. 127, 120-130. https://doi.org/10.1016/j.corsci.2017.08.023.
  21. Kong, D., Dong, C., Ni, X. & Li, X. (2019). Corrosion of metallic materials fabricated by selective laser melting. Materials Degradation. 3(1), 1-14. https://doi.org/10.1038/s41529-019-0086-1.
  22. Jeyaprakash, N., Yang, C.H., Karuppasamy, S.S. & Rajendran, D.K. (2022). Correlation of microstructural with corrosion behaviour of Ti-6Al-4V specimens developed through selective laser melting technique. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering. 236(5), 2240-2251. https://doi.org/10.1177/09544089221087823.
  23. Rohith, S., Mohan, N., Malik, V., Saxena, K.K. & Prasad, M.A. (2023). Modelling and optimization of selective laser melting parameters using Taguchi and super ranking concept approaches. International Journal on Interactive Design and Manufacturing. (IJIDeM). 17(5), 2415-2427. https://doi.org/10.1007/s12008-022-01011-y.
  24. Sheshadri, R., Nagaraj, M., Lakshmikanthan, A., Chandrashekarappa, M.P.G., Pimenov, D.Y., Giasin, K., Prasad, R.V.S. & Wojciechowski, S. (2021). Experimental investigation of selective laser melting parameters for higher surface quality and microhardness properties: taguchi and super ranking concept approaches. Journal of Materials Research and Technology. 14, 2586-2600. https://doi.org/10.1016/j.jmrt.2021.07.144.
  25. Romano, J., Ladani, L. & Sadowski, M. (2016). Laser additive melting and solidification of Inconel 718: Finite element simulation and experiment. The Journal of The Minerals, Metals & Materials Society (TMS). 68(3), 967-977. https://doi.org/10.1007/s11837-015-1765-1.
  26. Yang, Y., Knol, M.F., Van Keulen, F. & Ayas, C. (2018). A semi-analytical thermal modelling approach for selective laser melting. Additive Manufacturing. 21, 284-297. https://doi.org/10.1016/j.addma.2018.03.002.
  27. Ansari, M.J., Nguyen, D.S. & Park, H.S. (2019). Investigation of SLM process in terms of temperature distribution and melting pool size: Modeling and experimental approaches. Materials. 12(8), 1272, 1-18. https://doi.org/10.3390/ma12081272.
  28. Dong, Z., Liu, Y., Wen, W., Ge, J. & Liang, J. (2018). Effect of hatch spacing on melt pool and as-built quality during selective laser melting of stainless steel: Modeling and experimental approaches. Materials. 12(1), 50, 1-15. https://doi.org/10.3390/ma12010050.
  29. Wang, X., Lu, Q., Zhang, P., Yan, H., Shi, H., Sun, T., Zhou, K. & Chen, K. (2024). A review on the simulation of selective laser melting AlSi10Mg. Optics & Laser Technology. 174, 110500, 1-32. https://doi.org/10.1016/j.optlastec.2023.110500.
  30. Razavykia, A., Brusa, E., Delprete, C. & Yavari, R. (2020). An overview of additive manufacturing technologies—a review to technical synthesis in numerical study of selective laser melting. Materials. 13(17), 3895, 1-22. https://doi.org/10.3390/ma13173895.
  31. Korkmaz, M.E., Gupta, M.K., Robak, G., Moj, K., Krolczyk, G.M. & Kuntoğlu, M. (2022). Development of lattice structure with selective laser melting process: A state of the art on properties, future trends, and challenges. Journal of Manufacturing Processes. 81, 1040-1063. https://doi.org/10.1016/j.jmapro.2022.07.051.
  32. Gunasekaran, J., Sevvel, P. & Solomon, I.J. (2021). Metallic materials fabrication by selective laser melting: A review. Materials Today: Proceedings. 37, 252-256. https://doi.org/10.1016/j.matpr.2020.05.162.
  33. Jiang, H.Z., Li, Z.Y., Feng, T., Wu, P.Y., Chen, Q.S., Feng, Y.L., Li, S.W., Gao, H. & & Xu, H.J. (2019). Factor analysis of selective laser melting process parameters with normalised quantities and Taguchi method. Optics & Laser Technology. 119, 105592, 1-11. https://doi.org/10.1016/j.optlastec.2019.105592.
  34. Amir, B., Gale, Y., Sadot, A., Samuha, S. & Sadot, O. (2022). Study on the effects of manufacturing parameters on the dynamic properties of AlSi10Mg under dynamic loads using Taguchi procedure. Materials & Design. 111125, 1-11. https://doi.org/10.1016/j.matdes.2022.111125.
  35. Khorasani, A., Gibson, I., Awan, U.S. & Ghaderi, A. (2019). The effect of SLM process parameters on density, hardness, tensile strength, and surface quality of Ti-6Al-4V. Additive manufacturing. 25, 176-186. https://doi.org/10.1016/j.addma.2018.09.002.
  36. Olakanmi, E.O., Cochrane, R.F. & Dalgarno, K.W. (2015). A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: Processing, microstructure, and properties. Progress in materials science. 74, 401-477. https://doi.org/10.1016/j.pmatsci.2015.03.002.
  37. Trevisan, F., Calignano, F., Lorusso, M., Pakkanen, J., Aversa, A., Ambrosio, E.P., Lombardi, M., Fino, P. & Manfredi, D. (2017). On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. 10(1), 76, 1-23. https://doi.org/10.3390/ma10010076.
  38. Li, Y. & Gu, D. (2014). Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Materials & design. 63, 856-867. https://doi.org/10.1016/j.matdes.2014.07.006.
  39. Aboulkhair, N.T., Simonelli, M., Parry, L., Ashcroft, I., Tuck, C. & Hague, R. (2019). 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Progress in materials science.106, 100578, 1-45. https://doi.org/10.1016/j.pmatsci.2019.100578.
  40. Gu, D., Shi, Q., Lin, K. & Xi, L. (2018). Microstructure and performance evolution and underlying thermal mechanisms of Ni-based parts fabricated by selective laser melting. Additive Manufacturing. 22, 265-278. https://doi.org/10.1016/j.addma.2018.05.019.
  41. Read, N., Wang, W., Essa, K. & Attallah, M.M. (2015). Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Materials & Design (1980-2015). 65, 417-424. https://doi.org/10.1016/j.matdes.2014.09.044.
  42. Aboulkhair, N.T., Everitt, N.M., Ashcroft, I. & Tuck, C. (2014). Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive manufacturing. 1-4, 77-86. https://doi.org/10.1016/j.addma.2014.08.001.
  43. Sun, D., Gu, D., Lin, K., Ma, J., Chen, W., Huang, J., Sun, X. & Chu, M. (2019). Selective laser melting of titanium parts: Influence of laser process parameters on macro-and microstructures and tensile property. Powder Technology. 342, 371-379. https://doi.org/10.1016/j.powtec.2018.09.090.
  44. Majeed, A., Ahmed, A., Salam, A. & Sheikh, M.Z. (2019). Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing. International Journal of Lightweight Materials and Manufacture. 2(4), 288-295. https://doi.org/10.1016/j.ijlmm.2019.08.001.
  45. Wang, Z., Ummethala, R., Singh, N., Tang, S., Suryanarayana, C., Eckert, J. & Prashanth, K.G. (2020). Selective laser melting of aluminum and its alloys. Materials. 13(20), 4564, 1-68. https://doi.org/10.3390/ma13204564.
  46. Pal, S., Lojen, G., Hudak, R., Rajtukova, V., Brajlih, T., Kokol, V. & Drstvenšek, I. (2020). As-fabricated surface morphologies of Ti-6Al-4V samples fabricated by different laser processing parameters in selective laser melting. Additive Manufacturing. 33, 101147, 1-14. https://doi.org/10.1016/j.addma.2020.101147.
  47. Tian, Y., Tomus, D., Rometsch, P. & Wu, X. (2017). Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Additive Manufacturing. 13, 103-112. https://doi.org/10.1016/j.addma.2016.10.010.
  48. Xia, M., Gu, D., Yu, G., Dai, D., Chen, H. & Shi, Q. (2016). Influence of hatch spacing on heat and mass transfer, thermodynamics, and laser processability during additive manufacturing of Inconel 718 alloy. International Journal of Machine Tools and Manufacture. 109, 147-157. https://doi.org/10.1016/j.ijmachtools.2016.07.010.
  49. Sahadevan, P., Chithirai, P.S., Lakshmikanthan, A., Bhaumik, A. & Cuautle, A.F. (2024). Effect of printing process parameters on tensile strength and wear rate of 17-4PH stainless steel deposited using SLM process. Frattura Integrita Strutt. 18(70), 157-176. https://doi.org/10.3221/IGF-ESIS.70.09 .
  50. Garcia-Cabezon, C., Castro-Sastre, M. A., Fernandez-Abia, A. I., Rodriguez-Mendez, M. L. & Martin-Pedrosa, F. (2022). Microstructure–hardness–corrosion performance of 17–4 precipitation hardening stainless steels processed by selective laser melting in comparison with commercial alloy. Metals and Materials International.28, 2652-2667. https://doi.org/10.1007/s12540-021-01155-8.
  51. Sahadevan, P., Pon Selvan, C., Manjunath Patel, G. C. & Bhaumik, A. (2023). Selective laser melting process parameter optimization on density and corrosion resistance of 17-4PH stainless steel. Archives of Foundry Engineering. 23(4), 105-116. DOI: 10.24425/afe.2023.146685.

Date

26.08.2025

Type

Article

Identifier

DOI: 10.24425/afe.2025.155367
×