Details

Title

Utilization of metallurgical dust for the adsorptive removal of the organic pollutant Reactive Red 198

Journal title

Archives of Environmental Protection

Yearbook

2025

Volume

51

Issue

4

Authors

Affiliation

Pająk, Magdalena : Institute of Environmental Engineering Polish Academy of Sciences, Zabrze, Poland

Keywords

adsorption, ; metallurgical dust, ; reactive dye, ; wastewater, ; isotherms, ; kinetics

Divisions of PAS

Nauki Techniczne

Coverage

66-77

Publisher

Polish Academy of Sciences

Bibliography

  1. Asghari, A., Dalvand, S., Miresmaeili, M.S., Khoramjah, F., Omidvar, M., Kambarani, M. & Mohammadi, N. (2023). Reactive Red 198 as high-performance redox electrolyte additive for defective mesoporous carbon-based supercapacitor, International Journal of Hydrogen Energy, 48, 26, pp. 9776–9784. DOI: 10.1016/j.ijhydene.2022.11.322
  2. Baghapour, M.A., Pourfadakari, S. & Mahvi, A.H. (2014). Investigation of Reactive Red Dye 198 removal using multiwall carbon nanotubes in aqueous solution, Journal of Industrial and Engineering Chemistry, 20, 5, pp. 2921–2926. DOI: 10.1016/j.jiec.2013.11.029
  3. Bhatnagar, A. & Jain, A.K. (2005). A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water, Journal of Colloid and Interface Science, 281, pp. 49–55. DOI: 10.1016/j.jcis.2004.08.076
  4. Bohacz, J. (2020). Removal of a textile dye (RBBR) from the water environment by fungi isolated from lignocellulosic composts, Archives of Environmental Protection, 46, 2, pp. 12–20. DOI: 10.24425/aep.2020.133470
  5. Branca, T.A., Colla, V., Algermissen, D., Granbom, H., Martini, U., Morillon, A., Pietruck, R. & Rosendahl, S. (2020). Reuse and Recycling of By-Products in the Steel Sector: Recent Achievements Paving the Way to Circular Economy and Industrial Symbiosis in Europe, Metals, 10, 345. DOI:10.3390/met10030345
  6. Calvete, T., Lima, E.C., Cardoso, N.F., Dias, S.L.P. & Pavan, F.A. (2009). Application of carbon adsorbents prepared from the Brazilian pine-fruit-shell for the removal of Procion Red MX 3B from aqueous solution–Kinetic, equilibrium, and thermodynamic studies, Chemical Engineering Journal, 155, pp. 627–636. DOI:10.1016/j.cej.2009.08.019
  7. Carbaş, H.Ö., Kadak, A.E., Küçükgülmez, A., Gülnaz, O. & Çelik, M. (2023). Investigation of Reactive Red 198 Dye Removal by Chitosan from Aqueous Solution, Israeli Journal of Aquaculture - Bamidgeh, 75, 2. DOI:10.46989/001c.88510
  8. Chalaris, M., Gkika, D.A., Tolkou, A.K. & Kyzas, G.Z. (2023). Advancements and sustainable strategies for the treatment and management of wastewaters from metallurgical industries: an overview. Environmental Science and Pollution Research, 30, pp. 119627–119653. DOI:10.1007/s11356-023-30891-0
  9. Dehghani, M.H., Pourshabanian, M. & Heidarinejad, Z. (2018). Experimental data on the adsorption of Reactive Red 198 from aqueous solution using Fe3O4 nanoparticles: Optimization by response surface methodology with central composite design. Data in Brief, 19, pp. 2126–2132. DOI:10.1016/j.dib.2018.07.008
  10. Dehghani, M.H., Salari, M., Karri, R.R., Hamidi1, F. & Bahadori, R. (2021). Process modeling of municipal solid waste compost ash for reactive red 198 dye adsorption from wastewater using data driven approaches. Scientific Reports, 11, 11613. DOI:10.1038/s41598-021-90914-z
  11. Deogaonkar-Baride, S., Koli, M. & Ghuge, S.P. (2025). Recycling textile dyeing effluent through ozonation: An environmentally sustainable approach for reducing freshwater and chemical consumption and lowering operational costs. Journal of Cleaner Production, 510, 10, 145641. DOI:10.1016/j.jclepro.2025.145641
  12. Djordjevic, D., Stojiljkovic, D. & Smelcerovic, M. (2014). Adsorption kinetics of reactive dyes on ash from town heating plant, Archives of Environmental Protection, 40, 3, pp. 123–135. DOI: 10.2478/aep-2014-0024
  13. Dubinin, M.M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews. 60, pp. 235–241. DOI:10.1021/cr60204a006
  14. Fadzli, J., Ku Halim, K.H., Nik Him, N.R. & Puasa, S.W. (2022). A critical review on the treatment of reactive dye wastewater. Desalination. Water Treat. 257, pp. 185–203. DOI:10.5004/dwt.2022.28028
  15. Foo, K.Y. & Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, pp. 2–10. DOI:10.1016/j.cej.2009.09.013
  16. Freundlich, H.M.F. (1906). Over the adsorption in solution. Journal of Physical Chemistry, 57, pp. 385–471
  17. Google Maps. Available online: www.google.com/maps (accessed on 17 March 2025)
  18. Jain, A.K., Gupta, V.K., Bhatnagar, A. & Suhas. (2003). Utilization of industrial waste products as adsorbents for the removal of dyes. Journal of Hazardous Materials, 101, pp. 31–42. DOI:10.1016/S0304-3894(03)00146-8
  19. Kamani, H., Hosseinzehi, M., Ghayebzadeh, M., Azari, A., Ashrafi, S.D. & Abdipour, H. (2024). Degradation of reactive red 198 dye from aqueous solutions by combined technology advanced sonofenton with zero valent iron: Characteristics/effect of parameters/kinetic studies. Heliyon, e23667. DOI:10.1016/j.heliyon.2023.e23667
  20. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38, pp. 2221–2295. DOI:10.1021/ja02268a002
  21. Largitte, L. & Pasquier, R. (2016). A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chemical Engineering Research and Design, 109, pp. 495–504. DOI: 10.1016/j.cherd.2016.02.006
  22. Lazarević, S., Janković-Častvan, I., Jovanović, D., Milonjić, S., Janaćković, D. & Petrović, R. (2007). Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Applied Clay Science, 37, pp. 47–57. DOI:10.1016/j.clay.2006.11.008
  23. Makhathini, T.P., Bwapwa, J.K. & Mtsweni, S. (2023). Various Options for Mining and Metallurgical Waste in the Circular Economy: A Review. Sustainability, 15, 2518. DOI:10.3390/su15032518
  24. Manchisi, J., Matinde, E., Rowson, N.A., Simmons, M.J.H., Simate, G.S., Ndlovu, S. & Mwewa, B. (2020). Ironmaking and Steelmaking Slags as Sustainable Adsorbents for Industrial Effluents and Wastewater Treatment: A Critical Review of Properties, Performance, Challenges and Opportunities. Sustainability, 12, 2118. DOI:10.3390/su12052118
  25. Matei, E., Predescu, A.M., Șăulean, A.A., Râpă, M., Sohaciu, M.G., Coman, G., Berbecaru, A.C., Predescu, C., Vâju, D. & Vlad, G. (2022). Ferrous Industrial Wastes-Valuable Resources for Water and Wastewater Decontamination. International Journal of Environmental Research and Public Health, 19, 21, 13951. DOI:10.3390/ijerph192113951
  26. Mustafa, G., Noreen S., Ahmad, A., Iqbal, D.N., Rizwan, M., Jilani, M.I., Ahmad, M., Munir, S. & Kennedy, J.F. (2025). Eco-friendly polymeric ferrite based on chitosan, starch, PANI, PVA, and alginate for targeted degradation of reactive Red-198 dye in wastewater treatment. International Journal of Biological Macromolecules, 310, 3, 142434. DOI: 10.1016/j.ijbiomac.2025.142434
  27. Pająk, M. (2021). Adsorption Capacity of Smectite Clay and Its Thermal and Chemical Modification for Two Anionic Dyes: Comparative Study. Water Air and Soil Pollution, 232, 83. DOI:10.1007/s11270-021-05032-3
  28. Pająk, M. & Dzieniszewska, A. (2020). Evaluation of the metallurgical dust sorbent efficacy in Reactive Blue 19 dye removal from aqueous solutions and textile wastewater. Environmental Engineering Science, 37, 7, pp. 509–518. DOI:10.1089/ees.2019.0410
  29. Pournamdari, E. & Niknam, L. (2024). Applicability, adsorbent chitosan@Fe2 (MoO4)3 nanocomposite for removal of textile reactive red 198 dye from wastewater. Desalination and Water Treatment, 317, 100268. DOI:10.1016/j.dwt.2024.100268
  30. Shaali, A., Kamyab Moghadas, B. & Tamjidi, S. (2021). Removal of Reactive Red 198 dye from aqueous media using Boehmite/Fe3O4/GO magnetic nanoparticles as a novel & effective adsorbent, International Journal of Environmental Analytical Chemistry, 103, 18, pp. 7319–7338. DOI:10.1080/03067319.2021.1972990
  31. Song, Y., Wang, L., Qiang, X., Gu, W., Ma, Z. & Wang, G. (2023). An overview of biological mechanisms and strategies for treating wastewater from printing and dyeing processes. Journal of Water Process Engineering, 104242. DOI:10.1016/j.jwpe.2023.104242
  32. UN Environ Programme, Available online: https://www.unep.org/news-and-stories/press-release/half-world-face-severe-water-stress-2030-unless-water-use-decoupled (accessed on 19 March 2025)
  33. Xue, Y., Hou, H. & Zhu, S. (2009). Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: Isotherm and kinetic study. Chemical Engineering Journal, 147, pp. 272–279. DOI:10.1016/j.cej.2008.07.017

Date

9.12.2025

Type

Article

Publication type

Article

Identifier

DOI: 10.24425/aep.2025.157229

DOI

10.24425/aep.2025.157229

Pages

66-77

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×