Details

Title

The mutual effects of water quality and microbial community at water and sediments polluted by acid mine drainage from a typical abandoned coal mines

Journal title

Archives of Environmental Protection

Yearbook

2025

Volume

51

Issue

4

Authors

Affiliation

Zhao, Hong-Ji : School of Environment Science and Spatial Informatics, China University of Mining and Technology, Jiangsu, China ; Chu, Juan : Ecological Environment Monitoring Centre of Qiandongnan, Guizhou, China ; Wang, Qian : School of Environment Science and Spatial Informatics, China University of Mining and Technology, Jiangsu, China ; Wu, Quan-Jia : School of Environment Science and Spatial Informatics, China University of Mining and Technology, Jiangsu, China ; Li, Xiang-Dong : School of Environment Science and Spatial Informatics, China University of Mining and Technology, Jiangsu, China

Keywords

microbial diversity, ; environmental changes, ; water and sediments, ; abandoned coal mine drainage,

Divisions of PAS

Nauki Techniczne

Coverage

91-104

Publisher

Polish Academy of Sciences

Bibliography

  1. Acharya, B.S. & Kharel, G. (2020). Acid mine drainage from coal mining in the United States–An overview. Journal of Hydrology, 588, 125061. DOI:10.1016/j.jhydrol.2020.125061
  2. Aoyagi, T., Hamai, T., Hori, T., Sato, Y., Kobayashi, M., Sato, Y., Inaba, T., Ogata, A., Habe, H. & Sakata, T. (2017). Hydraulic retention time and pH affect the performance and microbial communities of passive bioreactors for treatment of acid mine drainage. Amb Express, 7(1), 142. DOI:10.1186/s13568-017-0440-z
  3. Bargiela, R., Korzhenkov, A.A., McIntosh, O.A., Toshchakov, S.V., Yakimov, M.M., Golyshin, P.N. & Golyshina, O.V. (2023). Evolutionary patterns of archaea predominant in acidic environment. Environmental Microbiome, 18(1), 61. DOI:10.1186/s40793-023-00518-5
  4. Basińska, A.M., Reczuga, M.K., Gąbka, M., Strózecki, M., Luców, D., Samson, M., Urbaniak, M., Lesny, J., Chojnicki, B.H., Gilbert, D., Sobczynski, T., Olejnik, J., Silvennoinen, H., Juszczak, R. & Lamentowicz, M. (2020). Experimental warming and precipitation reduction affect the biomass of microbial communities in a Sphagnum peatland. Ecological Indicators, 112, 106059. DOI:10.1016/j.ecolind.2019.106059
  5. Bu, C., Li, X., Li, Q., Li, L. & Wu, P. (2024). Spatiotemporal distributions, sources, and health risks of heavy metals in an acid mine drainage (AMD)-contaminated karst river in southwest China. Applied Water Science, 14(12), 251. DOI:10.1007/s13201-024-02317-w
  6. Chen, D., Feng, Q. & Liang, H. (2021). Effects of long-term discharge of acid mine drainage from abandoned coal mines on soil microorganisms: Microbial community structure, interaction patterns, and metabolic functions. Environmental Science and Pollution Research, 28(38), pp. 53936-53952. DOI:10.1007/s11356-021-14566-2
  7. Chen, D., Zhang, Y., & Feng, Q. (2023). Hydrochemical characteristics and microbial community evolution of Pinglu River affected by regional abandoned coal mine drainage, Guizhou Province, China. Environmental Science and Pollution Research, 30(27), pp. 70671-70687. DOI: 10.1007/s11356-023-27403-5
  8. Fan, X., Ding, S., Gong, M., Chen, M., Gao, S., Jin, Z. & Tsang, D.C. (2018). Different influences of bacterial communities on Fe (III) reduction and phosphorus availability in sediments of the Cyanobacteria-and macrophyte-dominated zones. Frontiers in microbiology, 9, 2636. DOI:10.3389/fmicb.2018.02636
  9. Feng, L., Zhang, Z., Yang, G., Wu, G., Yang, Q. & Chen, Q. (2023). Microbial communities and sediment nitrogen cycle in a coastal eutrophic lake with salinity and nutrients shifted by seawater intrusion. Environmental Research, 225, 115590. DOI:10.1016/j.envres.2023.115590
  10. Giordani, A., Rodriguez, R.P., Sancinetti, G.P., Hayashi, E.A., Beli, E. & Brucha, G. (2019). Effect of low pH and metal content on microbial community structure in an anaerobic sequencing batch reactor treating acid mine drainage. Minerals Engineering, 141, 105860. DOI:10.1016/j.mineng.2019.105860
  11. Han, X., Schubert, C.J., Fiskal, A., Dubois, N. & Lever, M.A. (2020). Eutrophication as a driver of microbial community structure in lake sediments. Environmental microbiology, 22(8), pp. 3446-3462. DOI:10.1111/1462-2920.15115
  12. Hesse, E., O'Brien, S., Tromas, N., Bayer, F., Luján, A.M., van Veen, E.M., Hodgson, D. & Buckling, A. (2018). Ecological selection of siderophore‐producing microbial taxa in response to heavy metal contamination. Ecology letters, 21(1), pp. 117-127. DOI:10.1111/ele.12878
  13. Huang, L., Bae, H., Young, C., Pain, A.J., Martin, J.B. & Ogram, A. (2021). Campylobacterota dominate the microbial communities in a tropical karst subterranean estuary, with implications for cycling and export of nitrogen to coastal waters. Environmental Microbiology, 23(11), pp. 6749-6763. DOI:10.1111/1462-2920.15746
  14. Jia, B., Li, Y., Zi, X., Gu, X., Yuan, H., Jeppesen, E. & Zeng, Q. (2023). Nutrient enrichment drives the sediment microbial communities in Chinese mitten crab Eriocheir sinensis culture. Environmental Research, 223, 115281. DOI:10.1016/j.envres.2023.115281
  15. Jia, L., Liu, H., Kong, Q., Li, M., Wu, S. & Wu, H. (2020). Interactions of high-rate nitrate reduction and heavy metal mitigation in iron-carbon-based constructed wetlands for purifying contaminated groundwater. Water research, 169, 115285. DOI:10.1016/j.watres.2019.115285
  16. Kozich, J.J., Westcott, S.L., Baxter, N.T., Highlander, S.K. & Schloss, P.D. (2013). Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Applied and environmental microbiology, 79(17), pp. 5112-5120. DOI:10.1128/AEM.01043-13
  17. Li, J., Wang, L., Wu, B., Wang, J., Yu, Y., Kuzyakov, Y., Ding, S. & Xu, X. (2025). Convergence and divergence of microbial communities in river-Qinghai lake sediment continuum on Tibetan Plateau. Water Research, 282, 123757. DOI:10.1016/j.watres.2025.123757
  18. Li, X., Ren, H., Xu, Z., Chen, G., Zhang, S., Zhang, L. & Sun, Y. (2023). Practical application for legacy acid mine drainage (AMD) prevention and treatment technologies in karst-dominated regions: A case study. Journal of Contaminant Hydrology, 258, 104238. DOI:10.1016/j.jconhyd.2023.104238
  19. Lukhele, T., Selvarajan, R., Nyoni, H., Mamba, B.B. & Msagati, T.A.M. (2019). Diversity and functional profile of bacterial communities at Lancaster acid mine drainage dam, South Africa as revealed by 16S rRNA gene high-throughput sequencing analysis. Extremophiles, 23, pp. 719-734. DOI:10.1007/s00792-019-01130-7
  20. Ma, L., Banda, J.F., Wang, Y., Yang, Q., Zhao, L., Hao, C. & Dong, H. (2024). Metagenomic insight into the acidophilic functional communities driving elemental geochemical cycles in an acid mine drainage lake. Journal of Hazardous Materials, 466, 133070. DOI:10.1016/j.jhazmat.2023.133070
  21. Malá, J., Hübelová, D., Schrimpelová, K., Kozumplíková, A. & Lejska, S. (2022). Surface watercourses as sources of karst water pollution. International Journal of Environmental Science and Technology, 19(5), 3503-3512. DOI: 10.1007/s13762-021-03440-w
  22. Naghoum, I., Edahbi, M., Melián, J.A.H., Doña Rodriguez, J.M., Durães, N., Pascual, B.A. & Salmoun, F. (2025). Passive Treatment of Acid Mine Drainage Effluents Using Constructed Wetlands: Case of an Abandoned Iron Mine, Morocco. Water, 17(5), 687. DOI:10.3390/w17050687
  23. Qin, S., Li, X., Huang, J., Li, W., Wu, P., Li, Q. & Li, L. (2024). Inputs and transport of acid mine drainage-derived heavy metals in karst areas of Southwestern China. Environmental Pollution, 343, 123243. DOI:10.1016/j.envpol.2023.123243
  24. Rosselló-Mora, R., Thamdrup, B., Schäfer, H., Weller, R. & Amann, R. (1999). The response of the microbial community of marine sediments to organic carbon input under anaerobic conditions. Systematic and Applied Microbiology, 22(2), pp. 237-248. DOI:10.1016/S0723-2020(99)80071-X
  25. Shang, Y., Wu, X., Wei, Q., Dou, H., Wang, X., Chen, J., Zhang, H., Ma, S. & Zhang, H. (2020). Total arsenic, pH, and sulfate are the main environmental factors affecting the microbial ecology of the water and sediments in Hulun Lake, China. Frontiers in Microbiology, 11, 548607. DOI:10.3389/fmicb.2020.548607
  26. Spear, J.R., Walker, J.J., McCollom, T.M. & Pace, N.R. (2005). Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proceedings of the National Academy of Sciences of the United States of America, 102(7), pp. 2555-2560. DOI:10.1073/pnas.0409574102
  27. Stahl, D.A. & De La Torre, J.R. (2012). Physiology and diversity of ammonia-oxidizing archaea. Annual review of microbiology, 66(1), pp. 83-101. DOI:10.1146/annurev-micro-092611-150128
  28. Sun, W., Xiao, T., Sun, M., Dong, Y., Ning, Z., Xiao, E., Tang, S. & Li, J. (2015). Diversity of the sediment microbial community in the Aha watershed (Southwest China) in response to acid mine drainage pollution gradients. Applied and Environmental Microbiology, 81(15), 4874-4884. DOI:10.1128/AEM.00935-15
  29. Teng, W., Kuang, J., Luo, Z. & Shu, W. (2017). Microbial diversity and community assembly across environmental gradients in acid mine drainage. Minerals, 7(6), 106. DOI:10.3390/min7060106
  30. Wang, M., Wang, X., Zhou, S., Chen, Z., Chen, M., Feng, S., Li, J., Shu, W. & Cao, B. (2023). Strong succession in prokaryotic association networks and community assembly mechanisms in an acid mine drainage-impacted riverine ecosystem. Water Research, 243, 120343. DOI:10.1016/j.watres.2023.120343
  31. Wang, Q., Garrity, G.M., Tiedje, J.M. & Cole, J.R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied and environmental microbiology, 73(16), pp. 5261-5267. DOI:10.1128/AEM.00062-07
  32. Whaley-Martin, K.J., Chen, L.X., Nelson, T.C., Gordon, J., Kantor, R., Twible, L.E., Marshall, S., McGarry, S., Rossi, L., Bessette, B., Baron, C., Apte, S., Banfield, J.F. & Warren, L.A. (2023). O2 partitioning of sulfur oxidizing bacteria drives acidity and thiosulfate distributions in mining waters. Nature Communications, 14(1), 2006. DOI:10.1038/s41467-023-37426-8
  33. Woese, C.R., Kandler, O. & Wheelis, M.L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America, 87(12), pp. 4576-4579. DOI:10.1073/pnas.87.12.4576
  34. Yan, P., Gu, X., Peng, Y., Fan, Y., Zhang, M., Sun, S. & He, S. (2023). Insight into the nutrient change in freshwater ecosystem under ferrous addition: Revealed by phosphorus, nitrogen, and microbial community. Journal of Cleaner Production, 433, 139874. DOI:10.1016/j.jclepro.2023.139874
  35. Yin, Y. & Wang, J. (2019). Enhanced biohydrogen production from macroalgae by zero-valent iron nanoparticles: Insights into microbial and metabolites distribution. Bioresource technology, 282, pp. 110-117. DOI:10.1016/j.biortech.2019.02.128
  36. Zhang, W., Gu, J., Li, Y., Lin, L., Wang, P., Wang, C., Qian, B., Wang, H., Niu, L., Wang, L., Zhang, H., Gao, Y., Zhu, M. & Fang, S. (2019a). New insights into sediment transport in interconnected river–lake systems through tracing microorganisms. Environmental science & technology, 53(8), pp. 4099-4108. DOI:10.1021/acs.est.8b07334
  37. Zhang, X., Tang, S., Wang, M., Sun, W., Xie, Y., Peng, H., Zhong, A., Liu, H., Zhang, X., Yu, H., Giesy, J.P. & Hecker, M. (2019b). Acid mine drainage affects the diversity and metal resistance gene profile of sediment bacterial community along a river. Chemosphere, 217, pp. 790-799. DOI:10.1016/j.chemosphere.2018.10.210
  38. Zheng, Y., Sun, Z., Liu, Y., Cao, T., Zhang, H., Hao, M., Chen, R., Dzakpasu, M. & Wang, X. (2022). Phytoremediation mechanisms and plant eco-physiological response to microorganic contaminants in integrated vertical-flow constructed wetlands. Journal of Hazardous Materials, 424, 127611. DOI:10.1016/j.jhazmat.2021.127611
  39. Zou, S., Liu, P., Wang, J., Lu, H., Zhang, Y., Wang, Y. & Li, B. (2025). Characterizing and tracing the heavy metals' spatial distribution in karst surface river affected by acid mine drainage. Environmental Engineering Research, 30(2), pp. 144-159. DOI:10.4491/eer.2024.180

Date

9.12.2025

Type

Article

Publication type

Article

Identifier

DOI: 10.24425/aep.2025.157231

DOI

10.24425/aep.2025.157231

Abstracting & Indexing

Abstracting & Indexing


Archives of Environmental Protection is covered by the following services:


AGRICOLA (National Agricultural Library)

Arianta

Baidu

BazTech

BIOSIS Citation Index

CABI

CAS

DOAJ

EBSCO

Engineering Village

GeoRef

Google Scholar

Index Copernicus

Journal Citation Reports™

Journal TOCs

KESLI-NDSL

Naviga

ProQuest

SCOPUS

Reaxys

Ulrich's Periodicals Directory

WorldCat

Web of Science

×