Details

Title

Cadmium and Lead Accumulation in Two Littoral Plants of Five Lakes in Poznan, Poland

Journal title

Acta Biologica Cracoviensia s. Botanica

Yearbook

2010

Volume

vol. 52

Issue

No 2

Authors

Divisions of PAS

Nauki Biologiczne i Rolnicze

Publisher

Biological Commission of the Polish Academy of Sciences – Cracow Branch

Date

2010

Identifier

DOI: 10.2478/v10182-010-0024-6 ; ISSN 0001-5296 ; eISSN 1898-0295

Source

Acta Biologica Cracoviensia s. Botanica; 2010; vol. 52; No 2

References

N. Ait Ali (2004), Tolerance and bioaccumulation of cadmium by <i>Phragmites australis grown</i> in the presence of elevated concentrations of cadmium, copper, and zinc, Aquatic Botany, 80, 163, doi.org/10.1016/j.aquabot.2004.08.008 ; Anders P. (2002), Wielkopolska - Słownik Krajoznawczy. ; Bose S. (2008), Chemical fractionation and translocation of heavy metals in <i>Canna indica</i> L. grown on industrial waste amended soil, Journal of Hazardous Materials, 160, 187, doi.org/10.1016/j.jhazmat.2008.02.119 ; Buczkowski R. (2002), Metody Remediacji Gleb Zanieczyszczonych Metalami Cięźkimi. ; Buczyńska E. (1995), Stan czystości Jeziora Rusałka. ; Das P. (1997), Studies on cadmium toxicity in plants: a Review, Environmental Pollution, 98, 1, 29, doi.org/10.1016/S0269-7491(97)00110-3 ; Demirezen D. (2004), Accumulation of heavy metals in <i>Typha angustifolia</i> (L.) and <i>Potamogeton pectinatus</i> (L.) living in Sultan Marsh (Kayseri, Turkey), Chemosphere, 56, 685, doi.org/10.1016/j.chemosphere.2004.04.011 ; Fillion M. (2009), Performance of <i>Salix viminalis</i> and <i>Populus nigra</i> x <i>Populus maximowiczii</i> in short rotation intensive culture under high irrigation, Biomass and Bioenergy, 33, 1271, doi.org/10.1016/j.biombioe.2009.05.011 ; Fourest E. (1992), Heavy metal biosorption by fungal mycelia by-products: mechanism and influence of pH, Applied Microbiology Biotechnology, 37, 399, doi.org/10.1007/BF00211001 ; Hermle S. (2006), Effects of metal-contaminated soil on the performance of young trees growing in model ecosystems under field conditions, Environmental Pollution, 144, 703, doi.org/10.1016/j.envpol.2005.12.040 ; Holan Z. (1994), Biosorption of lead and nickel by biomass of marine algae, Biotechnological Bioengineering, 43, 1001, doi.org/10.1002/bit.260431102 ; January M. (2008), Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can <i>Helianthus annuus</i> hyperaccumulate multiple heavy metals?, Chemosphere, 70, 531, doi.org/10.1016/j.chemosphere.2007.06.066 ; Kabata-Pendias A. (1999), Biogeochemia Pierwiastków Śladowych. ; Klosowski S. (2001), Kronika Miasta Poznania. ; Kufel I. (1980), Chemical composition of reed (<i>Phragmites australis</i> Trin. ex Steudel) in relation to the substratum, Bulletin of Polish Academy of Sciences, 28, 563. ; Lewander M. (1996), Macrophytes as indicators of bioavailable Cd, Pb and Zn flow in the river Pszemsza, Katowice region, Applied Geochemistry, 11, 169, doi.org/10.1016/0883-2927(95)00074-7 ; Liu J. (2007), Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland, Journal of Hazardous Materials, 147, 947, doi.org/10.1016/j.jhazmat.2007.01.125 ; Maluśkiewicz P. (2000), Poznań - Malta. ; Mazej Z. (2009), Trace element accumulation and distribution in four aquatic macrophytes, Chemosphere, 74, 642, doi.org/10.1016/j.chemosphere.2008.10.019 ; Mleczek M. (2009), Accumulation of selected heavy metals by different genotypes of Salix, Environmental and Experimental Botany, 66, 289, doi.org/10.1016/j.envexpbot.2009.02.010 ; O'Neill P. (1998), Environmental Chemistry. ; Peverly J. (1995), Growth and trace metal absorption by <i>Phragmites australis</i> in wetlands constructed for landfill leachate treatment, Ecological Engineering, 5, 21, doi.org/10.1016/0925-8574(95)00018-E ; Polakowska M. (1976), Rośliny Wodne. Atlas. ; Pułyk M. (1996), Stan czystości jezior badanych w latach 1990-1995 w województwie poznańskim Państwowa Inspekcja Ochrony Środowiska. ; Roos M. (1994), Sources and Forms of Potentially Toxic Metals in Soil-Plant Systems. ; Southichak B. (2006), <i>Phragmites australis</i>: A novel bioabsorbent for the removal of heavy metals from aqueous solution, Water Research, 40, 2295, doi.org/10.1016/j.watres.2006.04.027 ; Stoltz E. (2002), Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings, Environmental and Experimental Botany, 47, 271, doi.org/10.1016/S0098-8472(02)00002-3 ; Volesky B. (2000), Detoxification of metal-bearing effluents biosorption for the next century, Hydrometallurgy, 59, 203, doi.org/10.1016/S0304-386X(00)00160-2 ; Vymazal J. (2009), Trace elements in Phragmitres australis growing in constructed wetlands for treatment of municipal wastewater, Ecological Engineering, 35, 303, doi.org/10.1016/j.ecoleng.2008.04.007 ; Vymazal J. (2007), Trace elements in <i>Phragmites australis</i> and <i>Phalaris arundinacea</i> growing in constructed and natural wetlands, Science of the Total Environment, 380, 154, doi.org/10.1016/j.scitotenv.2007.01.057 ; Yang X. (2005), Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation, Journal of Trace Elements in Medicine and Biology, 18, 339, doi.org/10.1016/j.jtemb.2005.02.007
×