Details

Title

Immunolocalization of α-Expansin Protein (NtEXPA5) in Tobacco Roots in the Presence of the Arbuscular Mycorrhizal Fungus Glomus Mosseae Nicol. & Gerd

Journal title

Acta Biologica Cracoviensia s. Botanica

Yearbook

2011

Volume

vol. 53

Issue

No 2

Authors

Keywords

Arbuscular mycorrhizae ; arbuscule ; expansin ; host/fungus interface ; ultrastructure

Divisions of PAS

Nauki Biologiczne i Rolnicze

Publisher

Biological Commission of the Polish Academy of Sciences – Cracow Branch

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10182-011-0034-z ; ISSN 0001-5296 ; eISSN 1898-0295

Source

Acta Biologica Cracoviensia s. Botanica; 2011; vol. 53; No 2

References

Alexander T. (1988), Dynamics of arbuscule development and degeneration in mycorrhizas of <i>Triticum aestivum</i> L. and <i>Avena sativa</i> L. with reference to <i>Zea mays</i> L, New Phytologist, 110, 363, doi.org/10.1111/j.1469-8137.1988.tb00273.x ; Alexander T. (1989), Dynamics of arbuscule development and degeneration in onion, bean, and tomato with reference to vesiculararbuscular mycorrhizae in grasses, Canadian Journal of Botany, 67, 2505, doi.org/10.1139/b89-320 ; Armstrong L. (2002), The interface between the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> and root cells of <i>Panax quinquefolius</i>: a Paris-type mycorrhizal association, Mycologia, 94, 587, doi.org/10.2307/3761710 ; Augé R. (2001), Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis, Mycorrhiza, 11, 3, doi.org/10.1007/s005720100097 ; Balestrini R. (2005), The interface compartment in arbuscular mycorrhizae: a special type of plant cell wall?, Plant Biosystems, 139, 8. ; Balestrini R. (1994), Location of a cell wall hydroxyproline-rich glycoprotein, cellulose and β-1,3 glucans in apical and differentiated regions of maize mycorrhizal roots, Planta, 195, 201. ; Balestrini R. (2005), Differential location of alpha-expansin proteins during the accommodation of root cells to an arbuscular mycorrhizal fungus, Planta, 220, 889, doi.org/10.1007/s00425-004-1431-2 ; Bonfante P. (1995), Strategies of arbuscular mycorrhizal fungi when infecting host plants, New Phytologist, 130, 3, doi.org/10.1111/j.1469-8137.1995.tb01810.x ; Brundrett M. (2004), Diversity and classification of mycorrhizal associations, Biological Reviews, 79, 473, doi.org/10.1017/S1464793103006316 ; Cho H. (2002), Regulation of root hair initiation and expansin gene expression in <i>Arabidopsis.</i>, The Plant Cell, 14, 3237, doi.org/10.1105/tpc.006437 ; Choi D. (2006), Expansins: expanding importance in plant growth and development, Physiologia Plantarum, 126, 511. ; Cosgrove D. (1999), Enzymes and other agents that enhance cell wall extensibility, Annual Review of Plant Physiology and Plant Molecular Biology, 50, 391, doi.org/10.1146/annurev.arplant.50.1.391 ; Cosgrove D. (2000), New genes and new biological roles for expansins, Current Opinion in Plant Biology, 3, 73, doi.org/10.1016/S1369-5266(99)00039-4 ; Cox G. (1976), Translocations and transfer of nutrients in vesicular arbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study, New Phytologist, 77, 371, doi.org/10.1111/j.1469-8137.1976.tb01526.x ; Dermatsev V. (2010), Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus <i>Glomus intraradices</i> on tomato (<i>Solanum lycopersicum</i>), Molecular Plant Pathology, 11, 121, doi.org/10.1111/j.1364-3703.2009.00581.x ; Flemetakis E. (2004), Induction and spatial organization of polyamine biosynthesis during nodule development in <i>Lotus japonicus.</i>, Molecular Plant-Microbe Interactions, 17, 1283, doi.org/10.1094/MPMI.2004.17.12.1283 ; Fudali S. (2008), Two tomato α-expansins show distinct spatial and temporal expression patterns during development of nematode-induced syncytia, Physiologia Plantarum, 132, 370, doi.org/10.1111/j.1399-3054.2007.01017.x ; Gallaud J. (1905), Études sur les mycorrhizes endotrophes, Revue Générale de Botanique, 17, 5. ; Genre A. (2009), Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi, Plant Physiology, 149, 1424, doi.org/10.1104/pp.108.132225 ; Gianinazzi-Pearson V. (1991), Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H<sup>+</sup>-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces?, New Phytologist, 117, 61, doi.org/10.1111/j.1469-8137.1991.tb00945.x ; Giordano W. (2004), The expression of MaEXP1, a <i>Melilotus alba</i> expansin gene, is upregulated during the sweetclover - <i>Sinorhizobium meliloti</i> interaction, Molecular Plant-Microbe Interactions, 17, 613, doi.org/10.1094/MPMI.2004.17.6.613 ; Golotte A. (1996), Concepts in Mycorrhizal Research, 91. ; Gollotte A. (1997), Eukaryotism and Symbiosis, Intertaxonomic Combination Versus Symbiotic Adaptation, 412. ; Gooday G. (1971), An autoradiographic study of hyphal growth of some fungi, Journal of General Microbiology, 67, 125. ; Harrison M. (2002), A phosphate transporter from <i>Medicago truncatula</i> involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi, Plant Cell, 14, 2413, doi.org/10.1105/tpc.004861 ; Hiwasa K. (2003), Differential expression of seven alpha-expansin genes during growth and ripening of pear fruit, Physiologia Plantarum, 117, 564, doi.org/10.1034/j.1399-3054.2003.00064.x ; Journet E. (2002), Exploring root symbiotic programs in the model legume <i>Medicago truncatula</i> using EST analysis, Nucleic Acids Research, 30, 5579, doi.org/10.1093/nar/gkf685 ; Karnovsky M. (1965), A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy, The Journal of Cell Biology, 27. ; Kende H. (2004), Nomenclature for members of the expansin superfamily of genes and proteins, Plant Molecular Biology, 55, 311, doi.org/10.1007/s11103-004-0158-6 ; Kerff F. (2008), Crystal structure and activity of <i>Bacillus subtilis</i> YoaJ (EXLX1), a bacterial expansin that promotes root colonization, Proceedings of the National Academy of Sciences USA, 105, 16876, doi.org/10.1073/pnas.0809382105 ; Kim E. (2009), Functional characterization of a bacterial expansin from <i>Bacillus subtilis</i> for enhanced enzymatic hydrolysis of cellulose, Biotechnology and Bioengineering, 102, 1342, doi.org/10.1002/bit.22193 ; Kitagawa M. (2005), Characterization of tomato fruit ripening and analysis of gene expression in F<sub>1</sub> hybrids of the ripening inhibitor (rin) mutant, Physiologia Plantarum, 123, 331, doi.org/10.1111/j.1399-3054.2005.00460.x ; Kudla U. (2005), Origin, distribution and 3D-modeling of Gr-EXPB1, an expansin from the potato cyst nematode, Globodera rostochiensis. FEBS Letters, 579, 2451, doi.org/10.1016/j.febslet.2005.03.047 ; Lee Y. (2001), Expression of β-expansins is correlated with internodal elongation in deepwater rice, Plant Physiology, 127, 645, doi.org/10.1104/pp.010345 ; Lee Y. (2002), Expression of alpha-expansin and expansin-like genes in deepwater rice, Plant Physiology, 130, 1396, doi.org/10.1104/pp.008888 ; Lee D. (2003), Expression of an expansin gene is correlated with root elongation in soybean, Plant Physiology, 131, 985, doi.org/10.1104/pp.009902 ; Li Y. (2002), Plant expansins are a complex multigene family with an ancient evolutionary origin, Plant Physiology, 128, 854, doi.org/10.1104/pp.010658 ; Liu J. (2003), Transcript profiling coupled with spatial expression analyses reveals genes involved in distinct developmental stages of an arbuscular mycorrhizal symbiosis, The Plant Cell, 15, 2106, doi.org/10.1105/tpc.014183 ; Maldonado-Mendoza I. (1998), A xyloglucan endo-transglycosylate (XET) gene from <i>Medicago truncatula</i> induced in arbuscular mycorrhizae, null. ; McQueen-Mason S. (1994), Disruption of hydrogen bonding between wall polymers by proteins that induce plant wall extension, Proceedings of the National Academy of Sciences USA, 91, 6574, doi.org/10.1073/pnas.91.14.6574 ; McQueen-Mason S. (1995), Expansins mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding, Plant Physiology, 107, 87. ; Peterson R. (2004), Mycorrhizas: Anatomy and Cell Biology. ; Qin L. (2004), A nematode expansin acting on plant, Nature, 427, 30, doi.org/10.1038/427030a ; Rausch C. (2001), A Phosphate transporter expressed in arbuscule-containing cells in potato, Nature, 414, 462, doi.org/10.1038/35106601 ; Reinhardt D. (2007), Programming good relations - development of the arbuscular mycorrhizal symbiosis, Current Opinion in Plant Biology, 10, 98, doi.org/10.1016/j.pbi.2006.11.001 ; Rose J. (1997), Expression of a divergent expansin gene is fruit-specific and ripening-regulated, Proceedings of the National Academy of Sciences USA, 94, 5955, doi.org/10.1073/pnas.94.11.5955 ; Saloheimo A. (1994), A novel small endoglucanase gene, <i>EGL5</i>, from <i>Trichoderma reesei</i> isolated by expression in yeast, Molecular Microbiology, 13, 219, doi.org/10.1111/j.1365-2958.1994.tb00417.x ; Sambrook J. (1989), Molecular Cloning: A laboratory Manual. ; Sampedro J. (2005), The expansin super-family, Genome Biology, 6, 242, doi.org/10.1186/gb-2005-6-12-242 ; Siciliano V. (2007), Transcriptome analysis of arbuscular mycorrhizal roots during development of the prepenetration apparatus, Plant Physiology, 144, 1455, doi.org/10.1104/pp.107.097980 ; Smith S. (2008), Mycorrhizal Symbiosis. ; Sujkowska M. (2007), Localization of expansin-like protein in apoplast of pea (<i>Pisum sativum</i> L.) root nodules during interaction with <i>Rhizobium leguminosarum</i> bv. <i>viciae</i> 248, Acta Societatis Botanicorum Poloniae, 76, 17. ; Trivedi P. (2004), <i>MaExp1</i>, an ethylene-induced expansin from ripening banana fruit, Plant Science, 167, 1351, doi.org/10.1016/j.plantsci.2004.07.005 ; Venable J. (1965), Simplified lead citrate stain for use in electron microscopy, Journal of Cell Biology, 25, 407, doi.org/10.1083/jcb.25.2.407 ; Wei W. (2010), Synergism between cucumber α-expansin, fungal endoglucanase and pectin lyase, Journal of Plant Physiology, 167, 1204, doi.org/10.1016/j.jplph.2010.03.017 ; Weidmann S. (2004), Fungal elicitation of signal transduction-related plant genes precedes mycorrhiza establishment and requires the <i>dmi3</i> gene in <i>Medicago truncatula.</i>, Molecular Plant-Microbe Interactions, 17, 1385, doi.org/10.1094/MPMI.2004.17.12.1385 ; Whitney S. (2000), Probing expansin action using cellulose/hemicellulose composites, The Plant Journal, 22, 327, doi.org/10.1046/j.1365-313x.2000.00742.x ; Xu B. (2001), Cloning and sequencing of a molluscan <i>endo-b-1</i>, 4-glucanase gene from the blue mussel, <i>Mytilus edulis.</i>, European Journal of Biochemistry, 268, 3718, doi.org/10.1046/j.1432-1327.2001.02280.x ; Yennawar N. (2006), Crystal structure and activities of EXPB1 (Zea m 1), a α-expansin and group-1 pollen allergen from maize, Proceedings of the National Academy of Sciences, 103, 14664, doi.org/10.1073/pnas.0605979103
×