Details Details PDF BIBTEX RIS Title Do Arbuscular Mycorrhizal Fungi Affect Metallothionein Mt2 Expression In Brassica Napus L. Roots? Journal title Acta Biologica Cracoviensia s. Botanica Yearbook 2012 Volume vol. 54 Issue No 1 Authors Dąbrowska, Grażyna ; Hrynkiewicz, Katarzyna ; Trejgell, Alina Keywords oilseed rape ; mycorrhiza ; gene expression ; metallothionein Divisions of PAS Nauki Biologiczne i Rolnicze Publisher Biological Commission of the Polish Academy of Sciences – Cracow Branch Date 2012 Identifier DOI: 10.2478/v10182-012-0003-1 ; ISSN 0001-5296 ; eISSN 1898-0295 Source Acta Biologica Cracoviensia s. Botanica; 2012; vol. 54; No 1 References Błaszkowski J. (2006), <i>Acaulospora rehmii</i> and <i>Gigaspora margarita</i>, arbuscular mycorrhizal fungi (<i>Glomeromycota</i>) new for Europe and Poland, respectively, Acta Mycologica, 41, 41. ; Borie F. (2008), Arbuscular mycorrhizal fungi and soil aggregation, Journal of Plant Nutrition and Soil Science, 8, 9. ; H-J Chen (2003), Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (<i>Ipomoea batatas</i>) leaves, Journal of Plant Physiology, 160, 547, doi.org/10.1078/0176-1617-01040 ; Choi D. (1996), Molecular cloning of a metallothionein-like gene from <i>Nicotiana glutinosa</i> L. and its induction by wounding and tobacco mosaic virus infection, Plant Physiology, 112, 353, doi.org/10.1104/pp.112.1.353 ; Chomczyński P. (1987), Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Analytical Biochemistry, 162, 156, doi.org/10.1016/0003-2697(87)90021-2 ; Cicatelli A. (2010), Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression, Annals of Botany, 106, 5, 791, doi.org/10.1093/aob/mcq170 ; Cobbett C. (2000), Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annual Review of Plant Biology, 53, 159, doi.org/10.1146/annurev.arplant.53.100301.135154 ; Dąbrowska G. (2007), Characteristics of the plant ascorbate peroxidase family, Acta Biologica Cracoviensia Series Botanica, 49, 1, 7. ; Dunaeva M. (2001), Identification of genes expressed in response to light stress in leaves of <i>Arabidopsis thaliana</i> using RNA differential display, European Journal of Biochemistry, 268, 5521, doi.org/10.1046/j.1432-1033.2001.02471.x ; Gard N. (2010), Arbuscular mycorrhizal networks: process and functions. A review, Agronomy for Sustainable Development, 30, 581, doi.org/10.1051/agro/2009054 ; Hrynkiewicz K. (2012), Interactive and single effects of ectomycorrhiza formation and <i>Bacillus cereus</i> on metallothionein MT1 expression and phytoextraction of Cd and Zn by willows, Water, Air, & Soil Pollution, doi.org/10.1007/s11270-011-0915-5 ; Jansa J. (2003), Soil tillage affect the community structure mycorrhizal fungi in maize roots, Ecological Applications, 13, 4, 1164, doi.org/10.1890/1051-0761(2003)13[1164:STATCS]2.0.CO;2 ; Kabir Z. (1996), The proliferation of fungal hyphae in soils supporting mycorrhizal and non-mycorrhizal plants, Mycorrhiza, 6, 477, doi.org/10.1007/s005720050150 ; Khan I. (2003), Yield and nutrients uptake of <i>Avena sativa</i> as influenced by vesicular arbuscular mycorrhizal (VAM), Asian Journal of Plant Sciences, 2, 4, 347. ; Koszucka A. (2006), Plant metallothioneins, Advances in Cell Biology, 33, 2, 285. ; Ma M. (2003), The isolation and characterization of type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, <i>Festuca rubra</i> cv. Merlin, Plant Science, 164, 51, doi.org/10.1016/S0168-9452(02)00334-5 ; Miller M. (2000), Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies, Canadian Journal of Plant Science, 80, 47, doi.org/10.4141/P98-130 ; Mir G. (2004), A plant type 2 metal-lothionein (MT) from cork tissue responds to oxidative stress, Journal of Experimental Botany, 55, 2483, doi.org/10.1093/jxb/erh254 ; Oehl F. (2005), Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems, New Phytologist, 165, 273, doi.org/10.1111/j.1469-8137.2004.01235.x ; Oehl F. (2003), Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe, Applied and Environmental Microbiology, 69, 2816, doi.org/10.1128/AEM.69.5.2816-2824.2003 ; Olsen J. (1999), Effects of mycorrhizae, established from an existing intact hyphal network, on the growth response of capsicuum (<i>Capsicuum annuum</i> L.) and tomato (<i>Lycopersicon esculentum</i> Mill.) to five rates of applied phosphorus, Australian Journal of Agricultural Research, 50, 223, doi.org/10.1071/A97167 ; Ouziad F. (2005), Differential gene expressions in arbuscular mycorrhizalcolonized tomato grown under heavy metal stress, Journal of Plant Physiology, 162, 634, doi.org/10.1016/j.jplph.2004.09.014 ; Pellerin S. (2007), Effect of incorporation of <i>Brassica napus</i> L. residues in soils on mycorrhizal fungus colonization of roots and phosphorus uptake by maize (<i>Zea mays</i> L.), European Journal of Agronomy, 26, 113, doi.org/10.1016/j.eja.2006.07.007 ; Read D. (1999), Mycorrhizae, 3, doi.org/10.1007/978-3-662-03779-9_1 ; Rilling M. (2002), The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species, Plant, Soil and Environment, 238, 325, doi.org/10.1023/A:1014483303813 ; Rilling M. (2001), Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils, Plant, Soil and Environment, 233, 167, doi.org/10.1023/A:1010364221169 ; Rivera-Becerril F. (2005), Molecular changes in <i>Pisum sativum</i> L. roots during arbuscular mycorrhiza buffering of cadmium stress, Mycorrhiza, 16, 51, doi.org/10.1007/s00572-005-0016-7 ; Robinson N. (1993), Plant metallothioneins, Biochemical Journal, 295, 1, doi.org/10.1042/bj2950001 ; Sambrook J. (1989), Molecular Cloning. A Laboratory Manual. ; Scandalios J. (1993), Oxygen stress and superoxide dismutases, Plant Physiology, 101, 7, doi.org/10.1104/pp.101.1.7 ; Schreiner R. (1992), Antifungal compounds from the roots of mycotrophic and non-mycotrophic plant species, New Phytologist, 123, 99, doi.org/10.1111/j.1469-8137.1993.tb04535.x ; Smith S. (1997), Mycorrhizal Symbiosis. ; Singh A. (2003), Root endosymbiont: <i>Piriformospora indica</i> - a boon for orchids, Journal of Orchid Society of India, 15, 89. ; M Turan (2007), Phytoremediation based on canola (<i>Brassica napus</i> L.) and Indian mustard (<i>Brassica</i> juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn, Plant, Soil and Environment, 53, 7. ; Varma A. (1999), <i>Piriformospora indica</i>, a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi, Applied and Environmental Microbiology, 65, 2741. ; Voiblet C. (2001), Identification of symbiosis-regulated genes in <i>Eucalyptus globules, Pisolithus tinctorius</i> ectomycorrhiza by differential hybridization of arrayed cDNAs, Plant Journal, 25, 181, doi.org/10.1046/j.1365-313x.2001.00953.x ; Watrud L. (2011), Changes in constructed <i>Brassica</i> communities treated with glyphosate drift, Ecological Applications, 21, 525, doi.org/10.1890/09-2366.1 ; Wright S. (1996), Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during activa colonization of roots, Plant, Soil and Environment, 181, 193, doi.org/10.1007/BF00012053 ; Zhao S. (2010), Responses of root growth and protective enzymes to copper stress in turfgrass, Acta Biologica Cracoviensia Series Botanica, 52, 2, 7, doi.org/10.2478/v10182-010-0017-5