Details

Title

Do Arbuscular Mycorrhizal Fungi Affect Metallothionein Mt2 Expression In Brassica Napus L. Roots?

Journal title

Acta Biologica Cracoviensia s. Botanica

Yearbook

2012

Volume

vol. 54

Issue

No 1

Authors

Keywords

oilseed rape ; mycorrhiza ; gene expression ; metallothionein

Divisions of PAS

Nauki Biologiczne i Rolnicze

Publisher

Biological Commission of the Polish Academy of Sciences – Cracow Branch

Date

2012

Identifier

DOI: 10.2478/v10182-012-0003-1 ; ISSN 0001-5296 ; eISSN 1898-0295

Source

Acta Biologica Cracoviensia s. Botanica; 2012; vol. 54; No 1

References

Błaszkowski J. (2006), <i>Acaulospora rehmii</i> and <i>Gigaspora margarita</i>, arbuscular mycorrhizal fungi (<i>Glomeromycota</i>) new for Europe and Poland, respectively, Acta Mycologica, 41, 41. ; Borie F. (2008), Arbuscular mycorrhizal fungi and soil aggregation, Journal of Plant Nutrition and Soil Science, 8, 9. ; H-J Chen (2003), Molecular cloning of two metallothionein-like protein genes with differential expression patterns from sweet potato (<i>Ipomoea batatas</i>) leaves, Journal of Plant Physiology, 160, 547, doi.org/10.1078/0176-1617-01040 ; Choi D. (1996), Molecular cloning of a metallothionein-like gene from <i>Nicotiana glutinosa</i> L. and its induction by wounding and tobacco mosaic virus infection, Plant Physiology, 112, 353, doi.org/10.1104/pp.112.1.353 ; Chomczyński P. (1987), Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction, Analytical Biochemistry, 162, 156, doi.org/10.1016/0003-2697(87)90021-2 ; Cicatelli A. (2010), Arbuscular mycorrhizal fungi restore normal growth in a white poplar clone grown on heavy metal-contaminated soil, and this is associated with upregulation of foliar metallothionein and polyamine biosynthetic gene expression, Annals of Botany, 106, 5, 791, doi.org/10.1093/aob/mcq170 ; Cobbett C. (2000), Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis, Annual Review of Plant Biology, 53, 159, doi.org/10.1146/annurev.arplant.53.100301.135154 ; Dąbrowska G. (2007), Characteristics of the plant ascorbate peroxidase family, Acta Biologica Cracoviensia Series Botanica, 49, 1, 7. ; Dunaeva M. (2001), Identification of genes expressed in response to light stress in leaves of <i>Arabidopsis thaliana</i> using RNA differential display, European Journal of Biochemistry, 268, 5521, doi.org/10.1046/j.1432-1033.2001.02471.x ; Gard N. (2010), Arbuscular mycorrhizal networks: process and functions. A review, Agronomy for Sustainable Development, 30, 581, doi.org/10.1051/agro/2009054 ; Hrynkiewicz K. (2012), Interactive and single effects of ectomycorrhiza formation and <i>Bacillus cereus</i> on metallothionein MT1 expression and phytoextraction of Cd and Zn by willows, Water, Air, & Soil Pollution, doi.org/10.1007/s11270-011-0915-5 ; Jansa J. (2003), Soil tillage affect the community structure mycorrhizal fungi in maize roots, Ecological Applications, 13, 4, 1164, doi.org/10.1890/1051-0761(2003)13[1164:STATCS]2.0.CO;2 ; Kabir Z. (1996), The proliferation of fungal hyphae in soils supporting mycorrhizal and non-mycorrhizal plants, Mycorrhiza, 6, 477, doi.org/10.1007/s005720050150 ; Khan I. (2003), Yield and nutrients uptake of <i>Avena sativa</i> as influenced by vesicular arbuscular mycorrhizal (VAM), Asian Journal of Plant Sciences, 2, 4, 347. ; Koszucka A. (2006), Plant metallothioneins, Advances in Cell Biology, 33, 2, 285. ; Ma M. (2003), The isolation and characterization of type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, <i>Festuca rubra</i> cv. Merlin, Plant Science, 164, 51, doi.org/10.1016/S0168-9452(02)00334-5 ; Miller M. (2000), Arbuscular mycorrhizae and the phosphorus nutrition of maize: a review of Guelph studies, Canadian Journal of Plant Science, 80, 47, doi.org/10.4141/P98-130 ; Mir G. (2004), A plant type 2 metal-lothionein (MT) from cork tissue responds to oxidative stress, Journal of Experimental Botany, 55, 2483, doi.org/10.1093/jxb/erh254 ; Oehl F. (2005), Community structure of arbuscular mycorrhizal fungi at different soil depths in extensively and intensively managed agroecosystems, New Phytologist, 165, 273, doi.org/10.1111/j.1469-8137.2004.01235.x ; Oehl F. (2003), Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe, Applied and Environmental Microbiology, 69, 2816, doi.org/10.1128/AEM.69.5.2816-2824.2003 ; Olsen J. (1999), Effects of mycorrhizae, established from an existing intact hyphal network, on the growth response of capsicuum (<i>Capsicuum annuum</i> L.) and tomato (<i>Lycopersicon esculentum</i> Mill.) to five rates of applied phosphorus, Australian Journal of Agricultural Research, 50, 223, doi.org/10.1071/A97167 ; Ouziad F. (2005), Differential gene expressions in arbuscular mycorrhizalcolonized tomato grown under heavy metal stress, Journal of Plant Physiology, 162, 634, doi.org/10.1016/j.jplph.2004.09.014 ; Pellerin S. (2007), Effect of incorporation of <i>Brassica napus</i> L. residues in soils on mycorrhizal fungus colonization of roots and phosphorus uptake by maize (<i>Zea mays</i> L.), European Journal of Agronomy, 26, 113, doi.org/10.1016/j.eja.2006.07.007 ; Read D. (1999), Mycorrhizae, 3, doi.org/10.1007/978-3-662-03779-9_1 ; Rilling M. (2002), The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species, Plant, Soil and Environment, 238, 325, doi.org/10.1023/A:1014483303813 ; Rilling M. (2001), Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils, Plant, Soil and Environment, 233, 167, doi.org/10.1023/A:1010364221169 ; Rivera-Becerril F. (2005), Molecular changes in <i>Pisum sativum</i> L. roots during arbuscular mycorrhiza buffering of cadmium stress, Mycorrhiza, 16, 51, doi.org/10.1007/s00572-005-0016-7 ; Robinson N. (1993), Plant metallothioneins, Biochemical Journal, 295, 1, doi.org/10.1042/bj2950001 ; Sambrook J. (1989), Molecular Cloning. A Laboratory Manual. ; Scandalios J. (1993), Oxygen stress and superoxide dismutases, Plant Physiology, 101, 7, doi.org/10.1104/pp.101.1.7 ; Schreiner R. (1992), Antifungal compounds from the roots of mycotrophic and non-mycotrophic plant species, New Phytologist, 123, 99, doi.org/10.1111/j.1469-8137.1993.tb04535.x ; Smith S. (1997), Mycorrhizal Symbiosis. ; Singh A. (2003), Root endosymbiont: <i>Piriformospora indica</i> - a boon for orchids, Journal of Orchid Society of India, 15, 89. ; M Turan (2007), Phytoremediation based on canola (<i>Brassica napus</i> L.) and Indian mustard (<i>Brassica</i> juncea L.) planted on spiked soil by aliquot amount of Cd, Cu, Pb, and Zn, Plant, Soil and Environment, 53, 7. ; Varma A. (1999), <i>Piriformospora indica</i>, a cultivable plant growth promoting root endophyte with similarities to arbuscular mycorrhizal fungi, Applied and Environmental Microbiology, 65, 2741. ; Voiblet C. (2001), Identification of symbiosis-regulated genes in <i>Eucalyptus globules, Pisolithus tinctorius</i> ectomycorrhiza by differential hybridization of arrayed cDNAs, Plant Journal, 25, 181, doi.org/10.1046/j.1365-313x.2001.00953.x ; Watrud L. (2011), Changes in constructed <i>Brassica</i> communities treated with glyphosate drift, Ecological Applications, 21, 525, doi.org/10.1890/09-2366.1 ; Wright S. (1996), Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during activa colonization of roots, Plant, Soil and Environment, 181, 193, doi.org/10.1007/BF00012053 ; Zhao S. (2010), Responses of root growth and protective enzymes to copper stress in turfgrass, Acta Biologica Cracoviensia Series Botanica, 52, 2, 7, doi.org/10.2478/v10182-010-0017-5
×