Details

Title

Numerical methods of solving equations of hydrodynamics from perspectives of the code FLASH

Journal title

Bulletin of the Polish Academy of Sciences Technical Sciences

Yearbook

2011

Volume

59

Issue

No 1

Authors

Divisions of PAS

Nauki Techniczne

Coverage

81-91

Date

2011

Identifier

DOI: 10.2478/v10175-011-0012-3 ; ISSN 2300-1917

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences; 2011; 59; No 1; 81-91

References

Trangenstein J. (2008), Numerical Solution of Hyperbolic Partial Differential Equations. ; J. von Neumann (1950), A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys, 21, 232, doi.org/10.1063/1.1699639 ; Stone J. (1992), ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests", Astrophys, J. Suppl. Ser, 80, 791, doi.org/10.1086/191681 ; Murawski K. (1996), Numerical modeling of the solar wind interaction with Venus, Planet. Space Sci, 44, 3, 243, doi.org/10.1016/0032-0633(95)00108-5 ; Godunov S. (1959), A difference scheme for numerical solution of discontinuos solution of hydrodynamic equations, Math. Sb, 47, 271. ; Lee D. (2009), An unsplit staggered mesh scheme for multidimensional magnetohydrodynamics, J. Comput. Phys, 228, 4, 952, doi.org/10.1016/j.jcp.2008.08.026 ; J.J. Quirk, "An adaptive grid algorithm for computational shock hydrodynamics", <i>PhD Thesis</i>, College of Aeronautics, Cranfield Institute of Technology, Cranfield, 1991. ; Toro E. (2009), Riemann Solvers and Numerical Methods for Fluid Dynamics, doi.org/10.1007/b79761 ; LeVeque R. (1990), Numerical Methods for Conservation Laws. ; Harten A. (1983), On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev, 25, 1, 35, doi.org/10.1137/1025002 ; Einfeld B. (1988), On Godunov-type methods for gas dynamics, SIAM J. Num. Anal, 25, 2, 294, doi.org/10.1137/0725021 ; Roe P. (1981), Approximate Riemann solvers, parameter vectors and difference schemes, J. Comp. Phys, 43, 357, doi.org/10.1016/0021-9991(81)90128-5 ; Aslan N. (1996), Two-dimensional solutions of MHD equations with an adapted Roe method, Int. J. Numer. Meth. Fluids, 23, 11, 1211, doi.org/10.1002/(SICI)1097-0363(19961215)23:11<1211::AID-FLD469>3.0.CO;2-5 ; Einfeld B. (1991), On Godunov-type methods near low densities, J. Comp. Phys, 92, 2, 273, doi.org/10.1016/0021-9991(91)90211-3 ; Donat R. (1996), Capturing shock reflections: an improved flux formula, J. Comp. Phys, 125, 1, 42, doi.org/10.1006/jcph.1996.0078 ; Jin S. (1995), The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Comm. Pure Appl. Math, 48, 3, 235, doi.org/10.1002/cpa.3160480303 ; LeVeque R. (2002), Finite-volume Methods for Hyperbolic Problems, doi.org/10.1017/CBO9780511791253 ; LeVeque R. (2001), A class of approximate Riemann solvers and their relation to relaxation schemes, J. Comput. Phys, 172, 2, 572, doi.org/10.1006/jcph.2001.6838 ; Kolgan V. (1972), Application of the minimum-derivative principle in the construction of finite-diverence schemes for numerical analysis of discontinuous solutions in gas dynamics, Uch. Zap. TsaGI, 3, 6, 68. ; B. van Leer (1979), Towards the ultimate conservative difference scheme. V-A second-order sequel to Godunov's method, J. Comp. Phys, 32, 101, doi.org/10.1016/0021-9991(79)90145-1 ; Roe P. (1982), Sonic flux formulae, SIAM J. Sci. Stat. Comput, 13, 611. ; Harten A. (1989), ENO schemes with subcell resolution, J. Comp. Phys, 83, 148, doi.org/10.1016/0021-9991(89)90226-X ; Woodward P. (1984), The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comp. Phys, 54, 115, doi.org/10.1016/0021-9991(84)90142-6 ; Murawski K. (1994), Operator splitting for multidimensional magnetohydrodynamics, J. Geophys. Res, 99, A6, 11569, doi.org/10.1029/94JA00439 ; Strang G. (1968), On the construction and comparison of difference schemes, SIAM J. Num. Anal, 5, 3, 506, doi.org/10.1137/0705041 ; Colella P. (1990), Multidimensional upwind methods for hyperbolic conservation laws, J. Comp. Phys, 87, 171, doi.org/10.1016/0021-9991(90)90233-Q ; Berger M. (1989), Local adaptive mesh refinement for shock hydrodynamics, J. Comp. Phys, 82, 64, doi.org/10.1016/0021-9991(89)90035-1 ; Bell J. (1994), Three dimensional adaptive mesh refinement for hyperbolic conservation laws, SIAM J. Sci. Comput, 15, 1, 127, doi.org/10.1137/0915008 ; Martin D. (2000), A cell-centered adaptive projection method for the incompressible Euler equations, J. Comp. Phys, 163, 2, 271, doi.org/10.1006/jcph.2000.6575 ; DeZeeuw D. (1993), An adaptively refined Cartesian mesh solver for the Euler equations, J. Comp. Phys, 104, 56, doi.org/10.1006/jcph.1993.1007 ; Quirk J. (1994), A cartesian grid approach with hierarchical refinement for compressible flows, Computers and Fluids, 23, 1, 125. ; Trepanier J.-Y. (1993), An implicit flux- difference splitting method for solving the Euler equations on adaptive traingular grids, Int. J. Num. Meth. Heat Fluid Flow, 3, 1, 63, doi.org/10.1108/eb017516 ; Arendt S. (1993), Vorticity in stratified fluids. I. General formulation, Geophys. Astrophys. Fluid Dynamics, 68, 1, 59, doi.org/10.1080/03091929308203562 ; Hollweg J. (1982), On the origin of solar spicules, Astrophys. J, 257, 345, doi.org/10.1086/159993
×