Details Details PDF BIBTEX RIS Title Biological and chemical corrosion of cement materials modified with polymer Journal title Bulletin of the Polish Academy of Sciences Technical Sciences Yearbook 2015 Volume 63 Issue No 3 Authors Stanaszek-Tomal, E. ; Fiertak, M. Divisions of PAS Nauki Techniczne Coverage 591-596 Date 2015[2015.01.01 AD - 2015.12.31 AD] Identifier DOI: 10.1515/bpasts-2015-0069 ; ISSN 2300-1917 Source Bulletin of the Polish Academy of Sciences: Technical Sciences; 2015; 63; No 3; 591-596 References Czarnecki (2013), Prediction of the reinforced concrete structure durability under the risk of carbonation and chloride aggression, Bull Pol Tech, 61, 173. ; Monds (2009), Tool The developmental model of microbial biofilms : Ten years of a paradigm up for review, Trends Microbiol, 17, 73, doi.org/10.1016/j.tim.2008.11.001 ; Nica (2000), Isolation and characterization of microorganisms involved in the biodeterioration of concrete in sewers and, Int Biodeterioration Biodegradation, 46, 61, doi.org/10.1016/S0964-8305(00)00064-0 ; Fiertak (2012), Durability of polymer - modified cement materials exposed to activated sludge in sewage treatment plants Protection in Polish, Corrosion, 55, 266. ; Sand (1987), Importance of hydrogen sulfide thiosulfate and methylmercaptan for growth of thiobacilli during simulation of concrete corrosion, Appl Environ Microbiol, 53, 1645. ; Costerton (1994), Biofilms the customized microniche, Bacteriol, 176, 2137. ; Monteny (2000), De Belie Chemical microbiological and in situ test methods for biogenic sulfuric acid corrosion of concrete, Res, 30, 623. ; Currie (2001), A community of ants fungi and bacteria : a multilateral approach to studying symbiosis, Annu Rev Microbiol, 55, 357, doi.org/10.1146/annurev.micro.55.1.357 ; Jana (2005), Acid attack in a concrete sewer pipe a petrographic and chemical investigation th Cement Microscopy CD - ROM, Proc Int Conf, 27. ; Warscheid (2000), Biodeterioration of stone : a review and, Int Biodeterioration Biodegradation, 46, 343, doi.org/10.1016/S0964-8305(00)00109-8 ; Łukowski (2013), Self - repairing of polymer - cement concrete, Bull Pol Tech, 61, 195. ; Vincke (2001), Analysis of the microbial communities on corroded concrete sewer pipes - a case study, Appl Microbiol Biotechnol, 57, 776, doi.org/10.1007/s002530100826 ; Rakesh (2003), Study on some factors affecting the results in the use of MIP method in concrete research, Res, 33, 417. ; Czarnecki (2010), Polymer - cement concretes Lime Cement in Polish, Concrete, 5, 243. ; Gujer (2010), Nitrification and me a subjective review, Water Research, 44, 1, doi.org/10.1016/j.watres.2009.08.038 ; Dionisi (2002), Quantification of Nitrosomonas oligotropha - like ammonia oxidizing bacteria and Nitrospira spp from full - scale wastewater treatment plants by competitive PCR, Appl Environ Microbiol, 68, 245, doi.org/10.1128/AEM.68.1.245-253.2002 ; Costerton (1995), Microbial biofilms, Annu Rev Microbiol, 49, 711, doi.org/10.1146/annurev.mi.49.100195.003431 ; Chandra (2005), Fungal biofilms and actimycotics, Curr Drug Targets, 8, 887, doi.org/10.2174/138945005774912762 ; Rakesh (2004), Assessment of permeation quality of concrete through mercury intrusion porosimetry, Res, 34, 321. ; Leemann (2010), Influence of water hardness on concrete surface deterioration caused by nitrifying biofilms in wastewater treatment plants and, Int Biodeterioration Biodegradation, 64, 489, doi.org/10.1016/j.ibiod.2010.03.009 ; Okabe (1999), In situ analysis of nitrifying biofilms as determined by in situ hybridization and the use of microelectrodes, Appl Environ Microbiol, 65, 3182. ; Guadalupe (2010), Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes, Res, 40, 293.