Details

Title

Hamiltonian model of electromechanical actuator in natural reference frame.: Part II: Equations and simulations

Journal title

Archives of Electrical Engineering

Yearbook

2011

Volume

vol. 60

Issue

No 3 September

Authors

Keywords

electromechanical actuators ; reluctance motor ; Hamiltonian equations

Divisions of PAS

Nauki Techniczne

Coverage

331-348

Publisher

Polish Academy of Sciences

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10171-011-0029-0 ; ISSN: 1427-4221 ; eISSN: 2300-2506

Source

Archives of Electrical Engineering; 2011; vol. 60; No 3 September; 331-348

References

Arkkio A. (2010), Power balance for verifying torque computation within time-discretized finite-element analysis, null, 23. ; Agoston M. (2005), Computer graphics and geometric modeling - mathematics. ; Boldea I. (2005), Electric drives. ; Boldea I. (1996), Reluctance synchronous machines & drives. ; Borsuk K. (1977), Multidimensional analytical geometry. ; Brown J. (1983), A method of including the effects of main flux path saturation in generalised equations of A. C. machines, IEEE Transactions on Power Apparatus and Systems, PAS-102, 1, 96, doi.org/10.1109/TPAS.1983.318003 ; Burlikowski W. (2006), Mathematical model of an electromechanical actuator using flux state variables applied to reluctance motor, COMPEL, 25, 1, 169. ; Burlikowski W. (2008), Influence of saturation modelling method on results obtained using different implementations of reluctance motor simulational model, null, 69. ; Chua L. (1987), Linear and nonlinear circuits. ; Chua L. (1974), Explicit topological formulation of lagrangian and Hamiltonian equations for nonlinear networks, IEEE Transactions on Circuits and Systems, CAS-21, 2, 277, doi.org/10.1109/TCS.1974.1083849 ; Coulomb J. (1983), A methodology for determination of global electromechanical quantities from a finite element analysis and its application to the evaluation of magnetic forces, torques and stiffness, IEEE Trans. Magn, 19, 25, 14. ; M. De Berg (2000), Computational Geometry. ; Demenko A. (1996), Movement Simulation in Finite Element Analysis of Electric Machine Dynamics, IEEE TRANSACTIONS ON MAGNETICS, 32, 3, 1553, doi.org/10.1109/20.497547 ; Demenko A. (1994), Time-Stepping FE Analysis of Electric Motor Drives with Semiconductor Converters, IEEE TRANSACTIONS ON MAGNETICS, 30, 5, 3264, doi.org/10.1109/20.312634 ; Demenko A. (2008), Field and Field-Circuit Description of Electrical Machines, null, 2412. ; Engelking R. (1986), Introduction to topology. ; Fryze S. (1966), Selected problems of theoretical basis of electrical engineering. ; Goodman J. (1997), Handbook of discrete and computational geometry. ; Groff R. E., <i>Piecewise linear homeomorphisms for approximation of invertible maps.</i> Ph.D. Thesis, Univ. of Michigan (2003). ; Hu Y. (2002), Study of the mutually coupled switched reluctance machine using the finite element-circuit coupled method, IEE Proceedings - Electric Power Applications, 149, 2, 81, doi.org/10.1049/ip-epa:20020108 ; Jagieła M. (2010), Coupling electromagnetic (FE) models to multidomain simulator to analyse eletrical driver and complex control systems, AEE, 59, 3-4, 189. ; Jeltsema D. (2009), Multidomain modeling of nonlinear networks and systems, IEEE Control Systems Magazine, 28, doi.org/10.1109/MCS.2009.932927 ; Kang S. (1978), A global representation of multidimensional piecewise-linear functions with linear partitions, IEEE Transactions on Circuits and Systems, CAS-25, 11, 938, doi.org/10.1109/TCS.1978.1084401 ; Kluszczyński K. (2002), Step-by-step analysis of induction machines allowing for slotting. ; Krause P. (1986), Analysis of electric machinery. ; Ludwinek K. (2009), Harmonic distortion analysis in armature currents of synchronous machine during co-operation with the power system, Zeszyty Problemowe Maszyny Elektryczne, 84, 217. ; <i>Matlab on-line Manual</i>, R2010a, 2010. ; Meeker D., <i>Finite element method magnetics.</i> User's Manual, Ver. 4.2 (2007). ; Meunier G. (2008), The finite element method for electromagnetic modelling, doi.org/10.1002/9780470611173 ; Nehl T. (1982), Determination of saturated values of rotating machinery incremental and apparent inductances by an energy perturbation method, IEEE Transactions on Power Apparatus and Systems, PAS-101, 11, 4441, doi.org/10.1109/TPAS.1982.317296 ; Nowak L. (1999), Dynamic operation of an electromechanical actuator, COMPEL, 18, 4, 611. ; Ozturk S. (2008), Sensorless direct torque and indirect flux control of brushless DC motor with non-sinusoidal back-EMF, null, 1373. ; Park R. (1929), Two-reaction theory of synchronous machines - generalized method of analysis - Part I, AIEE Trans, 48, 716. ; Paszek W. (1998), Dynamics of alternating current electric machines. ; Puchała A. (1977), Dynamics of machines and electromechanical systems. ; Schlensok Ch. (2002), Simulation of a PMSM with SIMPLORER-FLUX2D-Coupling, null. ; Schmitz N. (1965), Introductory electromechanics. ; Sobczyk T. (2008), Inductanceless model of salient-pole synchronous machines, null, 620. ; Sobczyk T. (2004), Methodological aspects of mathematical modeling of induction machines. ; Spanier E. (1972), Algebraic topology. ; Stern T. E., <i>Piecewise-linear network theory.</i> MIT, Research Laboratory of Electronics, Technical Report 315 (1956). ; Stumberger G. (2004), Identification of linear synchronous reluctance motor parameters, IEEE Transactions On Industry Applications, 40, 5, 1317, doi.org/10.1109/TIA.2004.834118 ; Wach P. (1991), Devices for electromechanical energy conversion. ; Zomorodian A. (2005), Topology for computing, doi.org/10.1017/CBO9780511546945 ; Zunoubi M. (2010), CUDA Implementation of TEz-FDTD solution of Maxwell's equations in dispersive media, IEEE Antennas and Wireless Propagation Letters, 9, 756, doi.org/10.1109/LAWP.2010.2060181
×