Details

Title

A comparative study of thermodynamic electrolyte models applied to the Solvay soda system

Journal title

Chemical and Process Engineering

Yearbook

2011

Issue

No 2 June

Authors

Keywords

thermodynamic models ; electrolytes ; activity coefficients ; soda system

Divisions of PAS

Nauki Techniczne

Coverage

135-154

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2011

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10176-011-0011-9 ; ISSN 2300-1925 (Chemical and Process Engineering)

Source

Chemical and Process Engineering; 2011; No 2 June; 135-154

References

Abrams D. (1975), Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE J, 21, 116, doi.org/10.1002/aic.690210115 ; Anderko A. (2002), Electrolyte solutions: from thermodynamic and transport property models to the simulation of industrial processes, Fluid Phase Equilib, 194-197, 123, doi.org/10.1016/S0378-3812(01)00645-8 ; Arrhenius S. (1887), On the dissociation of substances dissolved in water, Zeitschrift für physikalische Chemie, 631. ; Balaban A. (2002), Phase equilibria modeling in aqueous systems containing 2-propanol and calcium chloride or/and magnesium chloride, Fluid Phase Equilib, 194-197, 717, doi.org/10.1016/S0378-3812(01)00783-X ; Bernardis M. (1989), NH<sub>3</sub> - CO<sub>2</sub> - H<sub>2</sub>O VLE calculation using an extended UNIQUAC equation, AIChE J, 35, 314, doi.org/10.1002/aic.690350217 ; Bethke C. (2008), Geochemical and biogeochemical reaction modeling. ; Bromley L. (1973), Thermodynamic properties of strong electrolytes in aqueous solutions, AIChE J, 19, 313, doi.org/10.1002/aic.690190216 ; Chen C.-C. (1979), Extension and application of the Pitzer equation for vapor - liquid equilibrium of aqueous electrolyte systems with molecular solutes, AIChE J, 25, 820, doi.org/10.1002/aic.690250510 ; Chen C.-C. (1980), Two new activity coefficient models for the vapour-liquid equilibrium of electrolyte systems, null, 61, doi.org/10.1021/bk-1980-0133.ch004 ; Chen C.-C. (1982), Local composition models for excess Gibbs energy of electrolyte systems, AIChE J, 28, 588, doi.org/10.1002/aic.690280410 ; Chen C.-C. (1986), A local composition model for the excess Gibbs energy of aqueous electrolyte systems, AIChE J, 32, 444, doi.org/10.1002/aic.690320311 ; Chen C.-C. (1986), Representation of solid - liquid equilibrium of aqueous electrolyte systems with the electrolyte NRTL model, Fluid Phase Equilib, 27, 457, doi.org/10.1016/0378-3812(86)87066-2 ; Cruz J. (1978), A new thermodynamic representation of binary electrolyte solutions nonideality in the whole range of concentration, AIChE J, 25, 817, doi.org/10.1002/aic.690240508 ; Debye P. (1923), The theory of electrolytes. Part I. Lowering of freezing point and related phenomena, Physikalische Zeitschrift, 185-206, 305. ; Duan Z. (2003), An improved model calculating CO<sub>2</sub> solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar, Chemical Geology, 193, 257, doi.org/10.1016/S0009-2541(02)00263-2 ; Gustafsson J. (2004), Visual MINTEQ version 2.30. ; Haghtalab A. (1988), Nonrandom factor model for the excess Gibbs energy of electrolyte solutions, AIChE J, 34, 803, doi.org/10.1002/aic.690340510 ; Haghtalab A. (2001), On extension of UNIQUAC-NRF model to study the phase behavior of aqueous two phase polymer - salt systems, Fluid Phase Equilib, 180, 139, doi.org/10.1016/S0378-3812(00)00518-5 ; Jaworski Z. (2010), A comparative study of two thermodynamic models applied to aqueous solutions of the NH<sub>3</sub> - H<sub>3</sub>PO<sub>4</sub> and NH<sub>3</sub> - CO<sub>2</sub> - NaCl systems, Chem. Process Eng, 31, 789. ; Kamps A. (2000), Influence of NH<sub>4</sub>Cl, NH<sub>4</sub>NO<sub>3</sub>, and NaNO<sub>3</sub> on the simultaneous solubility of ammonia and carbon dioxide in water, J. Chem. Eng. Data, 45, 796, doi.org/10.1021/je000106+ ; Königsberger E. (2008), FactSage and ChemApp: Two tools for the prediction of multiphase chemical equilibria in solutions, Pure Appl. Chem, 80, 1293, doi.org/10.1351/pac200880061293 ; Kurz F. (1995), Vapor - liquid - solid equilibria in the system NH<sub>3</sub> - CO<sub>2</sub> - H<sub>2</sub>O from around 310 to 470 K. New experimental data and modeling, Fluid Phase Equilib, 104, 261, doi.org/10.1016/0378-3812(94)02653-I ; Kurz F. (1996), Vapor - liquid and vapor - liquid - solid equilibria in the system ammonia - carbon dioxide - sodium chloride - water at temperatures from 313 to 393 K and pressures up to 3 MPa, Ind. Eng. Chem. Res, 35, 3795, doi.org/10.1021/ie960205+ ; Lin Y. (2010), Comparison of activity coefficient models for electrolyte systems, AIChE J, 56, 1334, doi.org/10.1002/aic ; Liu Y. (1989), Thermodynamics of Concentrated Electrolyte Solutions, Chem. Eng. Commun, 77, 43, doi.org/10.1080/00986448908940172 ; Liu Y. (1999), Successfully simulate electrolyte systems, Chem. Eng. Prog, 10, 25. ; Loehe J. (1997), Recent advances in modeling thermodynamic properties of aqueous strong electrolyte systems, AIChE J, 43, 180, doi.org/10.1002/aic.690430121 ; Meissner H. (1973), Aqueous solutions of two or more strong electrolytes: vapor pressure and solubilities, Ind. Eng. Chem. Process Des. Dev, 12, 205, doi.org/10.1021/i260046a013 ; Mullin J. (2001), Crystalization. ; OLI Systems Inc., 2010. A guide to using OLI Analyzer Studio v. 3.1. ; Pahlevanzadeh H. (2005), Estimation of UNIQUAC - NRF model parameters for CO<sub>2</sub> - NH<sub>3</sub> - H<sub>2</sub>O system, Iran. J. Chem. and Chem. Eng, 24, 21. ; Parkhurst D. (1999), User's guide to PHREEQC, US Geol. Surv. Water Resour. Inv. Rep. ; Pawlikowski E. (1982), Phase equilibria for aqueous solutions of ammonia and carbon dioxide, Ind. Eng. Chem. Process Des. Dev, 21, 764. ; Pazuki G. (2006a), Prediction of phase behavior of CO2 - NH3 - H2O system by using the UNIQUAC-Non Random Factor (NRF) model, Fluid Phase Equilib, 241, 57, doi.org/10.1016/j.fluid.2006.01.002 ; Pazuki G. (2006b), Solubility of CO<sub>2</sub> in aqueous ammonia solution at low temperature, Comp. Coupling Phase Diagr. Termochem, 30, 27, doi.org/10.1016/j.calphad.2005.11.006 ; Piotrowski J. (1998), Thermodynamic model of chemical and phase equilibrium in the urea synthesis process, Chem. Eng. Sci, 53, 183, doi.org/10.1016/S0009-2509(97)00271-6 ; Pitzer K. (1973), Thermodynamics of electrolyte. Part I. Theoretical basis general equations, J. Phys. Chem, 77, 268, doi.org/10.1021/j100621a026 ; Prausnitz J.M., Lichtenthaler R.N., Gomes de Azevedo E., 1999. <i>Molecular thermodynamics of fluid phase equilibria</i>, 3rd edition, New-Jersey. ; Renon H. (1968), Local compositions in thermodynamic excess functions for liquid mixtures, AIChE J, 14, 135, doi.org/10.1002/aic.690140124 ; Renon H. (1986), Electrolyte Solutions, Fluid Phase Equilib, 30, 181, doi.org/10.1016/0378-3812(86)80053-X ; Sander B., 1984. <i>Extended UNIFAC/UNIQUAC models for 1) Gas solubility calculations and 2) Electrolyte solutions</i>. Ph. D. Thesis Technical University of Denmark, Denmark. ; Sander B. (1986), Calculation of vapour-liquid equilibria in nitric acid - water - nitrate salt systems using an extended UNIQUAC equation, Chem. Eng. Sci, 41, 1185, doi.org/10.1016/0009-2509(86)87091-9 ; Silcock H. (1979), Solubilities of inorganic and organic compounds. ; Sing R. (1999), Solubility of ammonia in aqueous solutions of single electrolytes sodium chloride, sodium nitrate, sodium acetate, and sodium hydroxide, Ind. Eng. Chem. Res, 38, 2098, doi.org/10.1021/ie980572g ; Stephen H. (1963), Solubilities of inorganic and organic compounds. Binary systems. ; Thomsen K. (1996), Correlation and prediction of thermal properties and phase behaviour for a class of aqueous electrolyte systems, Chem. Eng. Sci, 51, 3675, doi.org/10.1016/0009-2509(95)00418-1 ; Thomsen K., 1997. <i>Aqueous electrolytes: model parameters and process simulation</i>. Ph. D. Thesis Technical University of Denmark, Denmark. ; Thomsen K. (1999), Modeling of vapour - liquid - solid equilibrium in gas - aqueous electrolyte systems, Chem. Eng. Sci, 54, 1787, doi.org/10.1016/S0009-2509(99)00019-6 ; Walas S. (1985), Phase equilibria in chemical engineering. ; Wang P. (2002), A speciation - based model for mixed - solvent electrolyte system, Fluid Phase Equilib, 203, 141, doi.org/10.1016/S0378-3812(02)00178-4 ; Wilson G. (1964), Vapor - liquid equilibrium. XI. A new expression for the excess free energy of mixing, J. Am. Chem. Soc, 86, 127, doi.org/10.1021/ja01056a002 ; Zemaitis J. (1986), Handbook of aqueous electrolyte thermodynamics, doi.org/10.1002/9780470938416

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766



×