Details

Title

Application of genetic algorithms to determine heavy metal ions sorption dynamics on clinoptilolite bed

Journal title

Chemical and Process Engineering

Yearbook

2012

Issue

No 1 March

Authors

Keywords

sorption dynamics ; genetic algorithm ; heavy metal ions ; clinoptilolite

Divisions of PAS

Nauki Techniczne

Coverage

103-116

Publisher

Polish Academy of Sciences Committee of Chemical and Process Engineering

Date

2012

Type

Artykuły / Articles

Identifier

DOI: 10.2478/v10176-012-0010-5 ; ISSN 2300-1925 (Chemical and Process Engineering)

Source

Chemical and Process Engineering; 2012; No 1 March; 103-116

References

Babu B. (2005), Modeling and simulation of fixed bed adsorption column: Effect of velocity variation, J. Eng. Technol, 1, 60, doi.org/10.1016/30923-4748(05)00044-05 ; Chang M. (2005), Equilibrium and kinetic studies on the adsorption of surfactant, organic acids and dyes from water onto natural biopolymers, Colloids Surf. A: Physicochem. Eng. Aspects, 269, 35, doi.org/10.1016/j.colsurfa.2005.06.064 ; Chen J. (2003), Effects of chemical and physical properties of influent on copper sorption onto activated carbon fixed-bed columns, Carbon, 41, 1635, doi.org/10.1016/S0008-6223(03)00193-3 ; Chojnacka K. (2004), The application of natural zeolites for mercury removal: from laboratory tests to industrial scale, Minerals Eng, 17, 7-8, 933, doi.org/10.1016/j.mineng.2004.03.002 ; Davis L. (1991), Handbook of genetic algorithms. ; Duffus J. (2002), Heavy metals a meaningless term? (IUPAC Technical Report), Pure Appl. Chem, 74, 793, doi.org/10.1351/pac200274050809 ; Erdem E. (2004), The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci, 280, 309, doi.org/10.1016/j.jcis.2004.08.028 ; Fogel D. (1994), An introduction to simulated evolutionary optimization, IEEE Trans. Neural Networks, 1, 5, 3, doi.org/10.1109/72.265956 ; Gök Ö. (2008), Adsorption kinetics of naphthalene onto organo-sepiolite from aqueous solutions, Desalination, 220, 96, doi.org/10.1016/j.desal.2007.01.025 ; Gomonaj V. (1998), Research on the usefulness transcarpathian clinoptilolite for the sorption of Hg(II), Cr(II) and Ni(II) from aqueous solutions, Ochrona Środowiska, 4, 71, 3. ; Gupta S. (2009), Modeling, simulation, and experimental validation of continuous Cr(VI) removal from aqueous solutions using sawdust as an adsorbent, Bioresource Technol, 100, 5633, doi.org/10.1016/j.biotech.2009.06.025 ; Holland J. H., 1968. Hierarchical descriptions of universal spaces and adaptive systems. <i>Technical Report ORA Projects 01252 & 08226.</i> Ann Arbor, Univ. of Michigan. ; Holland J. (1987), Genetic algorithms and classifier systems, foundation and future directions, null, 82. ; Kaminski W. (2005), Application of artificial intelligence systems to solve some environmental problems. ; Kaminski W. (1998), Application of genetic algorithms in chemical and process engineering, null, 281. ; Kamio E. (2002), Uptakes of rare metal ionic species by a column packed with microcapsules containing an extractant, Sep. Purif. Technol, 29, 121, doi.org/10.1016/51383-5866(02)00068-0 ; Kosobucki P. (2008), Immobilization of selected heavy metals in sewage sludge by natural zeolites, Bioresource Technol, 99, 5972, doi.org/10.1016/j.biortech.2007.10.023 ; Kurowski Z., 1978. <i>Application of national clinoptilolites for removal of ammonia nitrogen in water renewal.</i> PhD Thesis, Faculty of Environmental Engineering, Wrocław University of Technology (in Polish). ; Linnik P. (1998), Heavy metal speciation as important characteristic of water bodies ecotoxicological state, null, 1240. ; Mercer B. (1976), Ammonia removal from wastewater. Natural zeolites - occurancse, properties use, 458. ; Molga E. (2008), Modeling of reactive adsorption processes, Chem. Process Eng, 29, 683. ; Pérez-Marín A. (2007), Removal of cadmium from aqueous solutions by adsorption onto orange waste, J. Hazardous Materials, 139, 122, doi.org/10.1016/j.hazmat.2006.06.008 ; Petrus R. (2005), Heavy metal removal by clinoptilolite. An equilibrium study in multi-component system, Water Res, 39, 819, doi.org/10.1016/j.watres.2004.12.003 ; Rutkowska D. (1997), Neural networks, genetic algorithms and fuzzy systems. ; Sağ Y. (2001), Application of equilibrium and mass transfer models to dynamic removal of Cr (VI) ions by chitin in packed column reactor, Process Biochem, 36, 1187, doi.org/10.1016/S0032-9592(01)00150-9 ; Sprynskyy M. (2005), Ammonium removal from aqueous solution by natural zeolite. Transcarpathian modernite: kinetics, equilibrium and column tests, Sep. Purif. Technol, 46, 155, doi.org/10.1016/j.seppur.2005.05.004 ; Suguna M. (2010), Removal of divalent manganese from aqueous solution using Tamarindus indica ferut nut shell, J. Chem. Pharm. Res, 2, 1, 7. ; Tarasevich Yu. (2006), Equilibria and heats of ion exchange in the system of mordenite- alkali and alkaline earth cations, Theor. Experim. Chem, 42, 5, 320, doi.org/10.1007/S11237-006-0060-1 ; Tomczak E. (2011), Application of ANN and EA for description of metal ions on chitosan foamed structure - Equilibrium and dynamics of packed column, Comp. Chem. Eng, 35, 226, doi.org/10.1016/j.compchemeng.2010.05.012 ; Tomczak E. (2011a), Contamination removal from water solution in packed column - problems of adsorption dynamics modelling, Scientific Bulletin of Łódź Technical University, 1102, 412, 172. ; Tomczak E. (2008), Evolutionary algorithm reinforce with linear projection and clustering, null, 427, doi.org/10.1109/ICSEng.2008.12 ; Tomczak E. (2010), Description of the equilibrium and sorption kinetics of heavy metals on clinoptilolite, Inż. Aparat. Chem, 1, 113. ; Whitly D. (2001), An overview of evolutionary algorithms: practical issues and common pitfalls, Inform. Software Technol, 43, 817, doi.org/10.1016/S0950-5849(01)00188-4 ; Zamzow M. (1990), Removal of heavy metals and other cations from waste water using zeolites, Sep. Sci. Technol, 25, 13, doi.org/10.1080/01496399008050409

Editorial Board

Editorial Board

Ali Mesbah, UC Berkeley, USA ORCID logo0000-0002-1700-0600

Anna Gancarczyk, Institute of Chemical Engineering, Polish Academy of Sciences, Poland ORCID logo0000-0002-2847-8992

Anna Trusek, Wrocław University of Science and Technology, Poland ORCID logo0000-0002-3886-7166

Bettina Muster-Slawitsch, AAE Intec, Austria ORCID logo0000-0002-5944-0831

Daria Camilla Boffito, Polytechnique Montreal, Canada ORCID logo0000-0002-5252-5752

Donata Konopacka-Łyskawa, Gdańsk University of Technology, Poland ORCID logo0000-0002-2924-7360

Dorota Antos, Rzeszów University of Technology, Poland ORCID logo0000-0001-8246-5052

Evgeny Rebrov, University of Warwick, UK ORCID logo0000-0001-6056-9520

Georgios Stefanidis, National Technical University of Athens, Greece ORCID logo0000-0002-4347-1350

Ireneusz Grubecki, Bydgoszcz Univeristy of Science and Technology, Poland ORCID logo0000-0001-5378-3115

Johan Tinge, Fibrant B.V., The Netherlands ORCID logo0000-0003-1776-9580

Katarzyna Bizon, Cracow University of Technology, Poland ORCID logo0000-0001-7600-4452

Katarzyna Szymańska, Silesian University of Technology, Poland ORCID logo0000-0002-1653-9540

Marcin Bizukojć, Łódź University of Technology, Poland ORCID logo0000-0003-1641-9917

Marek Ochowiak, Poznań University of Technology, Poland ORCID logo0000-0003-1543-9967

Mirko Skiborowski, Hamburg University of Technology, Germany ORCID logo0000-0001-9694-963X

Nikola Nikacevic, University of Belgrade, Serbia ORCID logo0000-0003-1135-5336

Rafał Rakoczy, West Pomeranian University of Technology, Poland ORCID logo0000-0002-5770-926X

Richard Lakerveld, Hong Kong University of Science and Technology, Hong Kong ORCID logo0000-0001-7444-2678

Tom van Gerven, KU Leuven, Belgium ORCID logo0000-0003-2051-5696

Tomasz Sosnowski, Warsaw University of Technology, Poland ORCID logo0000-0002-6775-3766



×