Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Material suppliers typically recommend different additive amounts and applications for foundry practices. Therefore, even in the production of the same standard materials, different results may be obtained from various production processes on different foundry floors. In this study, the liquid metal prepared with the addition of different proportions of a FeSi-based inoculation, which is most commonly used in foundries in the production of a cast iron material with EN-GJL-250 lamellar graphite cast iron, was cast into sand molds prepared with a model designed to provide different solidification times. In this way, the optimization of the inoculation amounts on the casting structure for different solidification times was investigated. In addition, hardness values were determined depending on solidification time in varying amounts of inoculation additions. SolidCast casting simulation software was used to determine the casting model geometry and solidification time. In the scope of the study, sand casting, modeling, microstructure analysis, image analysis, microstructure analysis, and hardness tests techniques were used. When the results are examined, the required amount of inoculation for the optimal structure is optimized for the application procedure depending on the casting module and the solidification time.
Go to article

Authors and Affiliations

M. Çolak
1
ORCID: ORCID
E. Uslu
1
ORCID: ORCID
Ç. Teke
1
ORCID: ORCID
F. Şafak
2
Ö. Erol
2
Y. Erol
2
Y. Çoban
2 3
M. Yavuz

  1. Bayburt University, Turkey
  2. Konya Technical University, Turkey
  3. Yavuzsan A.Ş., Turkey
Download PDF Download RIS Download Bibtex

Abstract

The population of vendace ( Coregonus albula L., 1758) in many European lakes, especially in Central Europe, have declined recently as a result of lake eutrophication. The aim of the study was to (i) determine many years’ changes in the volume of vendace catches and specific physicochemical parameters of water, (ii) determine correlations between particular physicochemical parameters, and (iii) indicate hydrochemical parameters which show the greatest impact on the volume of vendace catches on the example of Lake Ińsko located in the European Central Plains Ecoregion. Principal Component Analysis (PCA) was applied to indicate the most important hydrochemical variables impact on vendace fisheries. Among them, after redundancy analysis, 6 were taken into account (total nitrogen, N-NO3, N-NO2, total phosphorus, oxygen concentration, temperature). Time series analysis revealed an increasing trend in nutrients concentration in lake. Analyses showed that fish catches were mostly negatively connected to nitrogen and phosphorus concentration. Trend analysis, based on the above-mentioned parameters, can provide prediction of vendace catches for further years with the predictability at the level of around 60% accuracy. The results of this study are very crucial to the vendace fisheries and for formulating fisheries management policies in the future in the changing hydrochemical condition of lakes.
Go to article

Authors and Affiliations

Przemysław Czerniejewski
1
ORCID: ORCID
Agnieszka Strzelczak
1
ORCID: ORCID
Sylwia Machula
1
ORCID: ORCID
Moises Martinez-Bracero
2
ORCID: ORCID

  1. West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences and Fisheries, al. Piastów 17, 70-310 Szczecin, Poland
  2. University of Cordoba, Department of Botany, Ecology and Plant Physiology, Cordoba, Spain
Download PDF Download RIS Download Bibtex

Abstract

The increasing demand for noble metals boosts their price. In order to meet the increasing demand for elements, a number of technologies are being developed to recover elements already present in the environment.Traffic-related metal pollution is a serious worldwide concern. Roadside soils are constantly subjected to the deposition of metals released by tailpipe gases, vehicle parts, and road infrastructure components. These metals,especially platinum group elements from catalytic converters, accumulating in the soil pose a risk both for agricultural and residential areas. Phytomining is suggested as a novel technology to obtain platinum group metals from plants grown on the contaminated soil, rock, or on mine wastes. Interest in this method is growing as interest in the recovery of rare metals is also increasing. Based on the research of many authors, the sources and amounts of noble metals that accumulate in soil along communication routes have been presented. The paper presents also plants that can be used for phytomining.
Go to article

Bibliography

  1. Ahmed, E. & Holmstrom, S.J.M. (2014). Siderophores in environmental research: role and applications. Microb. Biotechnol., 7 (3), pp. 196-208, DOI: 10.1111/1751-7915.12117
  2. Ali, S., Abbas, Z., Rizwan, M., Zaheer, L.E., Yavas, I., Unay, Z., Abdel-Daim, M.M., Bin-Jumah, M., Hasanuzzaman, M. & Kalderis, D. (2020). Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability, 12, pp. 1927, DOI:10.3390/se12051927
  3. Anderson, C.W.N., Brooks, R.R., Stewart, R.B. & Simcock, R. (1998). Harvesting a crop of gold in plants. Nature, pp. 553–554. DOI:10.1038/26875
  4. Baker, A.J.M. & Brooks, R.R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery, 1, pp. 81–126. DOI:10.1080/01904168109362867
  5. Bonanno, G. (2011). Trace element accumulation and distribution in the organs of Phragmites australis (common reed) and biomonitoring applications. Ecotoxicol. Environ. Saf., 74 (4), pp. 1057–1064. DOI:10.1016/j.ecoenv.2011.01.018
  6. Brooks, R.R. (1998). General introduction. In: Brooks R.R. Plants that hyperaccumulate heavy metals. CAB International. New York. USA, pp. 1-14. DOI:10.1002/9783527615919.ch4
  7. Çolak, M., Gümrükçüoğlu, M., Boysan, F. & Baysal E. (2016). Determination and mapping of cadmium accumulation in plant leaves on the highway roadside, Turkey. Arch. Environ. Prot., 42, 3, pp. 11–16. DOI:10.1515/aep-2016-0023
  8. Dahlheimer, S.R., Neal, C.R. & Fein, J.B. (2007). Potential mobilization of platinum-group elements by siderophore in surface environments. Environ. Sci. Technol., 41 (3), pp. 870-875, DOI:10.1021/es0614666
  9. Dang, P. & Li, C.A. (2021). mini-review of phytomining. Int. J. Environ. Sci. Technol. DOI:10.1007/s13762-021-03807-z
  10. Delgado-Gonzales, C.R., Madariaga-Navarrete, A., Fernandez-Cortes, J. M., Islas-Pelcastre, M., Oza, G., Iqbal, H.M.N. & Sharma, A. (2021). Advances and applications of water phytoremediation: A potential biotechnological approach for the treatment of heavy metals from contaminated water. Int. J. Environ. Res. Public Health., 18, pp. 5215. DOI:103390/ijrph18105215.
  11. Dinh T., Dobo Z., Kovacs H. (2022) Phytomining of noble metals – A review. Chemosphere, 286, 131805. https://doi.org/10.1016/j.chemosphere.2021.131805Flanagan, K., Bleken, G.T., Osterlund, H., Nordqvist, K. & Viklander, M. (2021). Contamination of urban stormwater pond sediments: A study of 259 legacy and contemporary organic substances. Environ. Sci. Technol., 55 (5), pp. 3009-3020. DOI:10.1021/ acs.est.0c07782.
  12. Fujita Corporation. Daiwa House Group. EAP technologies’ https://www.fujita.com/news-releases/120119.html
  13. Gasperi, J., Wright, S.L., Dris, R., Collard, F., Mandin, C., Guerrouache, M., Langlois, V., Kelly, F.J. & Tassin, B. (2018). Microplastics in air: Are webreathing it in? Curr Opin Environ Sci Health., 1, pp. 1-5. DOI:10.1016/j.coesh.2017.10.002
  14. Gawrońska, H. & Bakera, B. (2015). Phytoremediation of particulate matter from indoor air by Chlorophytum comosum L. plants. Air Qual. Atmos. Health., 8, pp. 265–272. DIOI:10.1007/s11869-014-0285-4
  15. Gawrońska, H., Przybysz, A., Szalacha, E., Pawlak, K., Brama, K., Miszczak, A., Stankiewicz-Kosyl, M. & Gawroński, S.W. (2018). Palatinum uptake, distribution and toxicity in Arabidopsis thaliana L. plants. Ecotoxicol. Environ. Saf., 147, pp. 982-989. DOI:10.1016/j.ecoenv.2017.09.065
  16. Gawroński, S.W., Greger, M. & Gawronska, H. (2011). Plant taxonomy and metal phytoremediation. In Ed. Sherameti I , Varma A. Soil biology vol. 30 Detoxification of heavy metals, Springier. London, pp. 91-109, DOI:10.1007/978-3-642-21408-0_5
  17. Global Database 2017 http://hyperaccumulators.smi.uq.edu.au/collection/
  18. González-Valdez, E., Alarcón, A., Ferrera-Cerrato, R., Vega-Carrillo, H.R., MaldonadoVega, M., Salas-Luévano, M.Á., Argumedo-Delira, R., (2018). Induced accumulation of Au, Ag and Cu in Brassica napus grown in a mine tailings with the inoculation of Aspergillus Niger and the application of two chemical compounds. Ecotoxicol. Environ. Saf. 154 (February), 180–186. DOI:10.1016/j. ecoenv.2018.02.055
  19. Gregoratos, T. & Martini, G. (2015). Brake wear particle emission: A review. Envarionmental Science and Pollution Research International, 22, pp. 2491-2504. DOI:10.1007/s11356-014-3696-8
  20. Harumain, Z.A., Parker, H.L., Muñoz García, A., Austin, M.J., McElroy, C.R. & Hunt, A.J. (2017). Toward financially viable phytoextraction and production of plant-based palladium catalysts. Environ Sci Technol, 51(5), pp. 2992–3000. DOI:10.1021/acs.est.6b0482
  21. Haverkamp, R.G., Marshall, A.T., Van Agterveld, D., (2007). Pick your carats: nanoparticles of gold-silver-copper alloy produced in vivo. J. Nanoparticle Res. 9 (4), 697–700. DOI:10.1007/s11051-006-9198-y
  22. Helmers, E. (1997). Pt emission rate of automobiles with catalytic converters: comparison and assessment of results from various approaches. Environ. Sci. Pollution Res., 4, pp. 100-103. DOI:10.1007/BF02986288
  23. Holnicki, P., Kałuszko, A., Nahorski, Z., Stankiewicz, K. & Trapp, W. (2017). Air quality modeling for Warsaw agglomeration. Arch. Environ. Prot., 43, 1, pp. 48–64. DOI:10.1515/aep-2017-0005
  24. Jowitt, S.M., Werner, T.T., Weng, Z. & Mudd, G.M. (2018). Recycling of the rare earth elements. Current Opinion in Green and Sustainable Chemistry, 13, pp. 1–7. DOI:10.1016/j.cogsc.2018.02.008
  25. Kim, K., Raymond, D. & Candeago, R. (2021). Selective cobalt and nickel electrodeposition for lithium-ion battery recycling through integrated electrolyte and interface control. Nat Commun, 12, pp. 6554. DOI:10.1038/s41467-021-26814-7
  26. Kończak B., Cempa M., Pierzchała Ł. & Deska M. (2021). Assessment of the ability of roadside vegetation to remove particulate matter from the urban air. Environmental Pollution, 268 (Pt B): 115465. DOI:10.1016/j.envpol.2020.115465
  27. Kowalska, J., Huszal, S., Sawicki, M., Asztemborska, M., Stryjewska, E., Szalacha, E., Golimowski, J. & Gawroński, S.W. (2004). Voltammetric Determination of platinum in plant material. Electroanalysis, 15, pp. 1266-1270. DOI:10.1002/elan.200302907
  28. Krisnayanti, B., Anderson, C., Sukartono, S., Afandi, Y., Suheri, H. & Ekawanti, A. (2016). Phytomining for artisanal gold mine tailings management. Minerals, 6, pp. 84. DOI:10.3390/min6030084
  29. Ladonin, D.V. (2017). Platinum-group elements in soils and streets dust of the Southeastern Administrative District of Moscow. Eurasian Soil Sci., 51, pp. 274-283, DOI:10.1134/S1064229318030055
  30. Liang, L., Wang, Z., & Li, J. (2019). The effect of urbanization on environmental pollution in rapidly developing urban agglomerations. Journal of cleaner production, 237, 117649.
  31. Liu, K., & Lin, B. (2019). Research on influencing factors of environmental pollution in China: A spatial econometric analysis. Journal of Cleaner Production, 206, 356-364.
  32. Liu, W.S., van der Ent, A., Erskine, P., Morel, J.L. & Echevarria, G. (2020). Spatially Resolved Localization of Lanthanum and Cerium in the Rare Earth Element Hyperaccumulator Fern Dicranopteris linearis from China., American Chemical Society, Environ. Sci. Technol., 54 (4), pp. 2287-2294. DOI:10.1021/acs.est.9b05728
  33. Łutczyk, G. (2008). Platinum and palladium as pollutants of roadside soils in Warsaw. Master Thesis. Warsaw University of Life Sciences, 59pp.
  34. Mathieu, L. (2021). From dirty oil to clean batteries. Transport & Environment, pp. 75.
  35. Matodzi, V., Legodi, M.A. & Tavengwa, N.T. (2020). Determination of Platinum group metals in dust, water, soil and sediments in the vicinity of a cement manufacturing plant. SN Appl. Sci., 2, pp. 1090. DOI:10.1007/s42452-020-2882-1
  36. McGrane S.C. (2016). Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review, Hydrological Sciences Journal, 61:13, 2295-2311. DOI:10.1080/02626667.2015.1128084
  37. Mesjasz-Przybyłowicz, J., Nakonieczny, M., Migula, P., Augustyniak, M., Tarnawska, M., Reimold, W.U., Koerbel, C., Przybyłowicz, W. & Głowacka, E. (2004). Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biologica Cracoviensia Series Botanica, 46, pp. 75–85.
  38. Mikołajczak, P., Borowiak, K. & Niedzielski, P. (2017). Phytoextraction of rare earth elements in herbaceous plant species growing close to roads. Environ Sci Pollut Res, 24, pp. 14091–14103. DOI:10.1007/s11356-017-8944-2
  39. Mleczek, P., P., Borowiak, K., Budka, A., Szostek, M. & Niedzielski, P. (2021). Possible sources of rare earth elements near different classes of road in Poland and their phytoextraction to herbaceous plant species. Environmental Research, pp. 193, 110580. DOI:10.1016/j.envres.2020.110580
  40. Moreira, H., Mench, M., Pereira, S., Garbisu, C. & Kidd, P. (2021). Phytomanagement of Metal(loid)-Contaminated Soils: Options, Efficiency and Value. Frontiers in Environmental Science, Frontiers, pp. 9. DOI:10.3389/fenvs.2021.661423
  41. Müller A., Österlund H., Marsalek J. & Viklander M. (2020). The pollution conveyed by urban runoff: A review of sources, Science of The Total Environment, 709, 136125. DOI:10.1016/j.scitotenv.2019.136125
  42. Nkrumah, P. N., Tisserand, R., Chaney, R.L., Baker, A.J.M., Morel, JL., Goudon, R., Erskine, P.D., Echevarria, G. & van der Ent, A. (2018). The firet tropical ‘metal farm’: Some perspectives from field and pot experiments. J. Geochem. Explor., 198, pp. 114-124. DOI:10.1016/j.gexplo.2018.12.003
  43. Nowak, D.J., Crane, D.E. & Stevens, J.C. (2006). Air pollution removal by urban tree and shrubs in the United States. Urban For Urban Green., 4(3-4), pp. 115-123. DOI:10.1016/j.ufug.2006.01.007
  44. Okoroafor, P. & Wiche, O. (2020). Screening of plants of different species and functional groups for phytomining of rare earth elements in soil, EGU General Assembly, pp. 4–8, EGU2020-1021. DOI:10.5194/egusphere-egu2020-1021, 2019.
  45. Pagliaro, M. & Meneguzzo, F. (2019). Lithium battery reusing and recycling: A circular economy insight. Heliyon, pp. 5, e01866.DOI:10.1016/j.heliyon.2019.e01866
  46. Rajakaruna, N. & Bohm, B.A. (2002). Serpentine and its vegetation: A preliminarystudy from Sri Lanka. J. Appl. Bot., 76, pp. 20-28.
  47. Ramos, S.J., Dinali, G.S., Oliveira, C., Martins, G.C., Moreira, C.G., Siqueira, J.O. & Guilherme, L.R.G. (2016). Rare Earth Elements in the Soil Environment. Curr. Pollution Rep., 2, pp. 28–50. DOI:10.1007/s40726-016-0026-4
  48. Reeves, R.D., Baker, A.J.M., Jaffre, T., Erskine, P.D., Echevarria, G. & van der Ent, A. (2017). A global database for plants that hyperaccumulate metal and metalloid trace elements. New Phytologist, 218, pp. 407–411. DOI:10.1111/nph.14907
  49. Reeves, R.D., Schwartz, C., Morel, J-L. & Edmondson, J. (2001). Distribution and metalaccumulating behavior of Thlaspi caerulescens and associated metallophytes in France. Int. J. Phytoremediation, 3, pp. 145–172. DOI:10.1080/15226510108500054
  50. Reith, F., Campbell, S.G., Ball, A.S., Pring, A. & Southam, G. (2014). Platinum in Earth surface environments. Earth-Science Reviews, 131, pp. 1-21. DOI:10.1016/j.earscirev.2014.01.003
  51. Rotkittikhun, P., Kruatrachue, M., Chaiyarat, R., Ngernsansaruay, C., Pokethitiyook, P., Paijitprapaporn, A. & Baker, A.J.M. (2006). Uptake and accumulation of lead by plants from the Bo Ngam lead mine area in Thailand. Environ. Pollut., 144, pp. 681-688. DOI:10.1016/j.envpol.2005.12.039
  52. Schafer, J. & Puchlet, H. (1998). Platinum-group-metals (PGM) emitted from automobile catalytic converters and their distribution in roadside soils. J. Geochem. Explor., 64, pp. 307-314. DOI:10.1016/S0375-6742(98)00040-5
  53. Schafer, J., Hannker, D., Eckhardt, J.D. & Stuben, D. (1998). Uptake of traffic-related heavy metals and platinum group elements (PGE) by plants. Sci. Total Environ., 215, pp. 59-67. DOI:10.1016/S0048-9697(98)00115-6
  54. Shan, X.Q., Wang, H., Zhang, S., Zhou, H., Zheng, Y., Yu, H. & Wen, B. (2003). Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma. Plant Sci., 165, pp. 1343-1353. DOI:10.1016/S0168-9452(03)00361-3
  55. Stein, RJ, Höreth, S, de Melo, J.R.F., Syllwasschy, L, Lee, G., Garbin, M.L., Clemens, S. & Krämer, U. (2017). Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model Arabidopsis halleri. New Phytologist, 213, pp. 1274–1286. DOI:10.1111/nph.14219
  56. Sun J., Yu J., Ma Q., Meng F., Wei X.,Sun Y., Tsubaki N. 2018. Freezing copper as a noble meta-like catalyst for preliminary hydrogenation. Science Advances 4: eaau3275.
  57. Sun, F.B., Yin, Z., Lun, X.X., Zhao, Y., Li, R. N., Shi, F.T. & Yu, X. (2014). Decomposition velocity of PM 2,5 in the winter and spring above coniferous forests in Beijing. China. PLoS one 9/5. DOI:10.1371/journal.pone.0097723.
  58. Sun, X., Luo, XS. & Xu, J. (2019) Spatio-temporal variations and factors of a provincial PM2.5 pollution in eastern China during 2013–2017 by geostatistics. Sci Rep 9, 3613. DOI:10.1038/s41598-019-40426-8
  59. Van der Ent, A., Echevarria, G., Baker, A.J.M. & Morel, J.L. (2018). Agromining: Farming for metals. Springer. DOI:10.1007/978-3-319-61899-9
  60. Yan, A., Wang, Y., Tan, S.N., Yusof, M.L.M., Ghosh, S. & Chen, Z. (2020). Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Frontiers in Plant Science, 2020. 11, article 359. DOI:10.3389/fpls.2020.00359
  61. Yu H., Ma J., Chen F., Zhang Q., Wang Y. & Bian Z. (2022). Effective remediation of electronic waste contaminated soil by the combination of metal immobilization and phytoremediation, Journal of Environmental Chemical Engineering, 2022, 107410. DOI:10.1016/j.jece.2022.107410
  62. Wilson-Corral, V., Anderson, C., Rodriguez-Lopez, M., Arenas-Vargas, M., LopezPerez, J., (2011). Phytoextraction of gold and copper from mine tailings with Helianthus annuus L. and Kalanchoe serrata L. Miner. Eng. 24 (13), 1488–1494. DOI:10.1016/j.mineng.2011.07.014
  63. Zereini, F., Wiseman, C.L.S.,Vang, M., Alberts, P., Schneider, W., Schindl, R. & Leopold, K. (2016). Geochemical behavior of palladium in soils and Pd/PdO model substances in presences of the organic complexing agents L-methionine and citric acid. Microb. Biotechnol., 18 (1), pp. 22-31. DOI:10.1039/c5em00521c
Go to article

Authors and Affiliations

Stanisław Gawroński
1
Grzegorz Łutczyk
2
Wiesław Szulc
1
ORCID: ORCID
Beata Rutkowska
1
ORCID: ORCID

  1. Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Poland
  2. Generalna Dyrekcja Dróg Krajowych i Autostrad, Poland
Download PDF Download RIS Download Bibtex

Abstract

The development of eco-friendly methods for removing hazardous inorganic and organic contaminants (e.g., metal ions, synthetic dyes) from water systems is of great importance for the health and life of humans and animals. Recently, there has been growing interest in the possibilities of using deep eutectic solvents (DESs) in separation processes aimed at removing various pollutants from aqueous solutions. DESs are typically non-toxic, biodegradable, and can be synthesised using simple methods. Moreover, the components used in DES synthesis, often considered “green” solvents, can be derived from natural sources. DESs are generally recyclable and relatively cheap. This review highlights recent advancements (mainly from 2023–2024) in the application of various DESs for the removal of metal and metalloid ions, as well as synthetic dyes, from aqueous solutions using solvent extraction (SE) and membrane separation (MP). It also includes critical comments on the limitations of current methods and their potential environmental impacts.
Go to article

Bibliography

  1. Abdussalam-Mohammed, W., Ali, A. Q. & Errayes, A. O. (2020). Green Chemistry: principles, applications, and disadvantages. Chemical Methodologies, 4(4), pp. 408-423. DOI:10.33945/SAMI/CHEMM.2020.4.4
  2. Abedpour, H., Moghaddas, J. S., Borhani, M. N. & Borhani, T. N. (2023). Separation of toxic contaminants from water by silica aerogel-based adsorbents: A comprehensive review. Journal of Water Process Engineering, 53, 103676. DOI:10.1016/j.jwpe.2023.103676
  3. Albrektienė-Plačakė, R. & Paliulis, D. (2024) Investigation on applying sapropel for removal of heavy metals (cadmium, chromium, copper, and zinc) from aqueous solutions. Archives of Environmental Protection, 50, 2, pp. 55-64. DOI:10.24425/aep.2024.150552
  4. Alguacil, F. J. & Robla, J. I. (2022). Solvent extraction in the recovery of metals from solutions: entering the third decade of XXI century. Desalination and Water Treatment, 265, pp. 71-93. DOI:10.5004/dwt.2022.28604
  5. Aljumaily, M.M., Ali, N.S., Mahdi, A.E., Alayan, H.M., AlOmar, M., Hameed, M.M., Ismael, B., Alsalhy, Q.F., Alsaadi, M.A., Majdi, H.S. & Mohammed, Z. (2022). Modification of poly(vinylidene fluoride-co-hexafluoropropylene) membranes with DES-functionalized carbon nanospheres for removal of methyl orange by membrane distillation. Water, 14, 9, 1396. DOI:10.3390/w14091396
  6. Alqahtani, A. S. (2024) Indisputable roles of different ionic liquids, deep eutectic solvents and nanomaterials in green chemistry for sustainable organic synthesis. Journal of Molecular Liquids, 399, 124469. DOI:10.1016/j.molliq.2024.124469
  7. Bayabil, H. K., Teshome, F. T., & Li, Y. C. (2022). Emerging Contaminants in Soil and Water. Frontiers in Environmental Science, 10, 873499. DOI: 10.3389/fenvs.2022.873499
  8. Benkhaya, S., M’rabet, S. & El Harfi, A. (2020). A review on classifications, recent synthesis and applications of textile dyes. Inorganic Chemistry Communications, 115, 107891. DOI:10.1016/j.inochem.2020.107891
  9. Białowąs, M., Kończak, B., Chałupnik, S. & Kalka J. (2024). Analysis of the feasibility of using biopolymers of different viscosities as immobilization carriers for laccase in synthetic dye removal. Archives of Environmental Protection, 50, 1, pp. 19-34. DOI:10.24425/aep.2024.149429
  10. Blanco, L., Martínez-Rico, O., Domínguez, Á. & González, B. (2023). Removal of Acid Blue 80 from aqueous solutions using chitosan-based beads modified with choline chloride:urea deep eutectic solvent and FeO. Water Resources and Industry, 29, 100195. DOI:10.1016/j.wri.2022.100195
  11. Blano, L.V., Sas, O.G., Sánchez, P.B., Santiago, Á.D. & de Prado, B.G. (2022). Congo red recovery from water using green extraction solvents. Water Resources and Industry, 27, 100170. DOI:10.1016/j.wri.2021.100170
  12. Bratovcic, A. (2023). Recent achievements in photocatalytic degradation of organic water contaminants. Kemija u Industriji, 72, pp. 573−583. DOI:10.15255/KUI.2022.058
  13. Chakraborty, G., Bhattarai, A. & De, R. (2022). Polyelectrolyte – Dye interactions: An overview. Polymers, 14, 598. DOI:10.3390/polym14030598
  14. Chavan, R.B. Handbook of textile and industrial dyeing. Principles, Processes and Types of Dyes. 16 – Environmentally friendly dyes. Volume 1 in Woodhead Publishing Series in Textiles. 2011, pp. 515-561. DOI:10.1533/9780857093974
  15. Chemat, F., Vian, M.A., Fabiano-Tixier, A-S., Nutrizio, M., Jambrak, A.R., Munekata, P.E.S., Lorenzo, J.M., Barba, F.J., Binello, A. & Cravotto, G. (2020). A review of sustainable and intensified techniques for extraction of food and natural products. Green Chemistry, 22, 2325, pp. 2325-2353. DOI:10.1039/C9GC03878G
  16. Chen, K., Dong, H., Ni, Y., Qian, Y., Wang, Y. & Xu, K. (2024). Selective extraction of anionic and cationic dyes using tailored hydrophobic deep eutectic solvents. Talanta, 268, 1, 125312. DOI:10.1016/j.talanta.2023.125312
  17. Crema, A. P. S., Schaeffer, N., Bastos, H., Silva, L.P., Abranches, D. O., Passos, H., Hespanhol, M. C. & Coutinho, J.A. P. (2023). New family of type V eutectic solvents based on 1,10-phenanthroline and their application in metal extraction. Hydrometallurgy, 215, 105971. DOI: 10.1016/j.hydromet.2022.105971
  18. Cruz, K.A.M.L., Rocha, F.R.P. & Hespanhol, M.C. (2024). Greener route for recovery of high-purity lanthanides from the waste of nickel metal hydride battery using a hydrophobic deep eutectic solvent. ACS Sustainable Chemistry Engineering, 12, 16, 6169–6181. DOI: 10.1021/acssuschemeng.3c07784
  19. Date, M. & Jaspal, D. (2024). Dyes and heavy metals: removal, recovery and wastewater reuse - a review. Sustainable Water Resources Management, 10, 90. DOI: 10.1007/s40899-024-01073-8
  20. Duque, M., Snajuan, A., Bou-Ali, M.M., Alonso, R.M., Campanero, M.A. (2023). Physicochemical characterization of hydrophobic type III and type V deep eutectic solvents based on carboxylic acids. Journal of Molecular Liquids, 392, 1, 123431. DOI:10.1016/j.molliq.2023.123431
  21. Ealias, A. M., Meda, G. & Tanzil, K. (2024). Recent progress in sustainable treatment technologies for the removal of emerging contaminants from wastewater: A review on occurrence, global status and impact on biota. Reviews of Environmental Contamination and Toxicology, 262, 16. DOI: 10.1007/s44169-024-00067-z
  22. El Achkar, T., Greige-Gerges, H. & Fourmentin, S. (2021). Basics and properties of deep eutectic solvents: a review. Environmental Chemistry Letters, 19, pp. 3397–3408. DOI: 10.1007/s10311-021-01225-8
  23. Feng, F., Wang, M., Zhang, J., Ding, H., Yu, L., Guo, W., Guo, L., Liang, Q., Zhang, Q., Lu, C. & Li, X. (2024). Hydrogen bonding-based deep eutectic solvents for choline chloride/sulfamide and its application in the recycling of precious metals. Journal of Environmental Chemical Engineering, 12(5), 113611. DOI: 10.1016/j.jece.2024.113611.
  24. Hassan, M.F., Khan, A.S., Akbar, N., Ibrahim, T.H., Khamis, M.I., Jumean, F.H., Siddiqui, R., Khan, N.A. & Yasir, N. (2022). Efficient extraction of methylene blue from aqueous solution using phosphine-based deep eutectic solvents with carboxylic acid. Processes, 10, 2151. DOI:10.3390/pr10102152
  25. Haq, H.U., Wali, A., Safi, F., Arain, M.B., Kong, L. & Boczkaj, G. (2023). Natural deep eutectic solvent based ultrasound assisted liquid-liquid micro-extraction method for methyl violet dye determination in contaminated river water. Water Resources and Industry, 29, 100210. DOI:10.1016/j.wri.2023.100210
  26. Hussain, Z., Chang, N., Sun, J., Xiang, S., Ayaz, T., Zhang, H. & Wang, H. (2022). Modification of coal fly ash and its use as low-cost adsorbent for the removal of directive, acid and reactive dyes. Journal of Hazardous Materials, 422, 126778. DOI:10.1016/j.jhazmat.2021.126778
  27. Ilame, T. & Ghosh, A. (2022). The promising applications of nanoparticles for synthetic dyes removal from wastewater: recent review. Management of Environmental Quality, 33(2), pp. 451-477. DOI:10.1108/MEQ-07-2021-0179
  28. Jeong, C., Ansari, M. H., Anwer, A. H., Kim S. H., Nasar, A., Shoeb, M. & Mashkoor, F. (2023). A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Separation and Purification Technology, 305, 122416. DOI:10.1016/j.seppur.2022.122416
  29. Kaczorowska, M.A. (2022). The use of polymer inclusion membranes for the removal of metal ions from aqueous solutions—the latest achievements and potential industrial applications: a review. Membranes, 12, 1135. DOI:10.3390/membranes12111135
  30. Kaczorowska, M. A., Bożejewicz, D. & Witt, K. (2023a). Application of a deep eutectic mixture and ionic liquid as carriers in polymer adsorptive membranes for removal of copper(II) and zinc(II) ions from computer scrap leachates. Desalination and Water Treatment, 316, pp. 505-513. DOI:10.5004/dwt.2023.30166
  31. Kaczorowska, M. A., Bożejewicz, D. & Witt, K. (2023b). The application of polymer inclusion membranes for the removal of emerging contaminants and synthetic dyes from aqueous solutions - A mini review. Membranes, 13, 132. DOI:10.3390/membranes1302013
  32. Khodabandeloo, F., Shahsavarifar, S., Nayebi, B. Niavol, K.P., Nayebi, B., Varma, R.S., Cha, J.H., Jang, H.W., Kim, D. & Shokouhimehr, M. (2023). Application of nanostructured semiconductor photocatalysts for the decontamination of assorted pollutants from wastewater. Inorganic Chemistry Communication, 157, 111357. DOI:10.1016/j.inoche.2023.111357
  33. Kizil, N., Erbilgin, D.E., Yola, M.L. & Soylak, M. (2024). An environmentally friendly hydrophobic deep eutectic solvent dispersive liquid liquid microextraction for spectrophotometric analysis of indigo carmine (E132). Optical and Quantum Electronics, 56, 341. DOI:10.1007/s11082-023-05964-6
  34. Kumar, G., Kumar, K. & Bharti, A. (2024). Quantum chemistry-based approach for density prediction of non-ionic hydrophobic eutectic solvents. Journal of Solution Chemistry, 53, pp.1195–1210. DOI:10.1007/s10953-024-01372-w
  35. Kunasekaran, K., Harikumar, N. S. & Ramalingam, A. (2024). Volumetric investigation of Cu(II) And Hg(II) aqueous mixtures with {tetrabutylammonium bromide plus glycerol (1:3)} deep eutectic solvents and extraction performances of {tetrabutylammonium bromide plus capric acid/oleic acid} over divalent (Cu and Hg) heavy metals. Journal of Chemical & Engineering Data, 69(3), pp. 1188-1218. DOI:10.1021/acs.jced.3c00770
  36. Kurtulbaş, E., Ciğeroğlu, Z., Şahin, S., El Messaoudi, N. & Mehmeti V. (2024). Monte Carlo, molecular dynamic, and experimental studies of the removal of malachite green using g-C3N4/ZnO/Chitosan nanocomposite in the presence of a deep eutectic solvent. International Journal of Biological Macromolecules, 274, 1, 133378. DOI:10.1016/j.ijbiomac.2024.133378
  37. Kuśmierek, K., Dąbek, L. & Świątkowski A. (2023). Removal of Direct Orange 26 azo dye from water using natural carbonaceous materials. Archives of Environmental Protection, 49, 1 pp. 47–56. DOI 10.24425/aep.2023.144736
  38. Liu, J., Chen, B., Huang, Y., Cao, Y., Chen, J., Wang, L., Liu, Y. & Fan, Y. (2024). Efficient and clean treatment of indium-bearing zinc ferrite: A new approach using a water-regulated deep eutectic solvent. Separation and Purification Technology, 347, 127576. DOI:10.1016/j.seppur.2024.127576
  39. Liu, L., Zhu, G., Huang, Q., Yin, C., Jiang, X., Yang, X. & Xie, Q. (2021). Efficient recovery of Au(III) through PVDF-based polymer inclusion membranes containing hydrophobic deep eutectic solvent. Journal of Molecular Liquids, 343, 117670. DOI:10.1016/j.molliq.2021.117670.
  40. Mafakheri, N., Shamsipur, M. & Babajani, N. (2024). Development of a dispersive liquid–liquid microextraction procedure based on a natural deep eutectic solvent for ligand-less preconcentration and determination of heavy metals from water and food samples, Microchemical Journal, 199, 110010. DOI:10.1016/j.microc.2024.110010
  41. Majidi, E. & Bakhshi, H. (2024). Hydrophobic deep eutectic solvents characterization and performance for efficient removal of heavy metals from aqueous media, Journal of Water Process Engineering, 57, 104680. DOI:10.1016/j.jwpe.2023.104680.
  42. Martín, M. I., García-Díaz, I. & López, F. A. (2023). Properties and perspective of using deep eutectic solvents for hydrometallurgy metal recovery. Minerals Engineering, 203, 108306. DOI:10.1016/j.mineng.2023.108306
  43. Martínez-Rico, Ó., Asla, A., Domínguez, Á. & González, B. (2024). Reversible dye extraction from aqueous matrices using ammonium salt-based deep eutectic solvents. Separation and Purification Technology, 335, 126208. DOI:10.1016/j.seppur.2023.126208
  44. Moody, V. & Needles, H.L. (2004). Tufted Carpet. Textile fibers, dyes, finishes, and processes. William Andrew, Norwich, pp. 155-175.
  45. Nejrotti, S., Antenucci, A., Pontremoli, C., Gontrani, L., Barbero, N., Carbone, M. & Bonomo, M. (2022). Critical assessment of the sustainability of deep eutectic solvents: A case study on six choline chloride-based mixtures. ACS Omega, 7, 51, pp. 47449–47461. DOI:10.1021/acsomega.2c06140
  46. Nithya, R., Thirunavukkarasu, A., Sathya, A.B. & Sivashankar, R. (2021). Magnetic materials and magnetic separation of dyes from aqueous solutions: a review. Environmental Chemistry Letters, 19, pp. 1275-1294. DOI:10.1007/s10311-020-01149-9
  47. Ola, P. D. & Matsumoto, M. (2024). Extraction of Au(III), Pt(IV), and Pd(II) from aqueous media with deep eutectic solvent dissolved in n-heptane as extractant. Indonesian Journal of Chemistry, 23, 6, pp.1735-1741. DOI:10.22146/ijc.80862
  48. Omar, K.A. & Sadeghi, R. (2022). Hydrophobic deep eutectic solvents: thermo-physical characteristic and their application in liquid-liquid extraction. Journal of the Iranian Chemical Society, 19, pp. 3529-3537. DOI:10.1007/s13738-022-02547-2
  49. Patel, D., Suthar, K. J., Balsora, H. K., Patel, D., Panda, S. R. & Bhavsar, N. (2024). Estimation of density and viscosity of deep eutectic solvents: Experimental and machine learning approach. Asia-Pacific Journal of Chemical Engineering, e3151. DOI:10.1002/apj.3151
  50. Prabhune, A. & Dey, R. (2023). Green and sustainable solvents of the future: Deep eutectic solvents. Journal of Molecular Liquids, 379, 121676. DOI:10.1016/j.molliq.2023.121676.
  51. Rao, H.S.P. (2023). Deep eutectic solvents. Resonance, 28, pp. 1865–1874. DOI:10.1007/s12045-023-1724-z
  52. Santana-Mayor, A., Rodríguez-Ramos, R., Herrera-Herrera, A.V., Socas-Rodríguez, B., & Rodríguez-Delgado, M.A. (2021). Deep eutectic solvents. The new generation of green solvents in analytical chemistry. Trends in Analytical Chemistry, 134, 116108. DOI:10.1016/j.trac.2020.116108.
  53. Santhosh, K.N., Samage, A., Mahadevaprasad, K.N., Aditya, D.S., Jayapandi, S., Yoon, H. & Nataraj, S.K. (2024). Harnessing deep eutectic solvents for upcycling waste membranes into high-performance adsorbents and energy storage materials. Chemical Engineering Journal, 484, 149747. DOI:10.1016/j.cej.2024.149747
  54. Shrestha, R., Ban, S., Devkota, S., Sharma, S., Joshi, R., Tiwari, A. P., Kim, H. Y. & Joshi, M. K. (2021). Technological trends in heavy metals removal from industrial wastewater: A review, Journal of Environmental Chemical Engineering, 9, 4, 105688. DOI:10.1016/j.jece.2021.105688.
  55. Shuping, C., Zhihan, Z., Dong, W., Wenjing, Z., Tao, Q., Zhi, W., Wanhai, X., Yong, L. & Guobiao, L. (2025). Selective leaching and recovery of rare earth from NdFeB waste through a superior selective and stable deep eutectic solvent. Separation and Purification Technology, Part B, 353, 128498. DOI:10.1016/j.seppur.2024.128498.
  56. Słupek, E., Makoś, P. & Gębicki, J. (2020). Deodorization of model biogas by means of novel non-ionic deep eutectic solvent. Archives of Environmental Protection, 46, 1, pp. 41–46. DOI:10.24425/aep.2020.132524
  57. Sriram, G., Bendre, A., Mariappan, E., Altalhi, T., Kigga, M., Ching, Y.C., Jung, H-Y., Bhaduri, B. & Kurkuri, M. (2022). Recent trends in the application of metal-organic frameworks (MOFs) for the removal of toxic dyes and their removal mechanism-a review. Sustainable Materials and Technologies, 31, 300378. DOI:10.1016/j.susmat.2021.e00378
  58. Srivastav, A. L., Patel, N., Rani, L., Kumar, P., Dutt, I., Maddodi, B. S. & Chaudhary, V. K. (2024). Sustainable options for fertilizer management in agriculture to prevent water contamination: a review. Environment, Development and Sustainability, 26, pp. 8303–8327. DOI:10.1007/s10668-023-03117-z
  59. Viyanni, P.M. & Sethuraman, M.G. (2024). Electrodeposition of NiCo on stainless steel substrate using deep eutectic solvent for efficient hydrogen evolution and methanol oxidation reactions. Journal of Electroanalytical Chemistry, 967, 118471. DOI:10.1016/j.jelechem.2024.118471
  60. Wang, B., Wang, Y. & Xu, T. (2023). Recent advances in the selective transport and recovery of metal ions using polymer inclusion membranes. Advanced Materials Technologies, 8, 22, 2300829. DOI:10.1002/admt.202300829
  61. Wang, C. & Hua, E. (2024). Extraction of metal ions using novel deep eutectic solvents with chelating amine. Journal of Solution Chemistry, 53, pp. 1340–1352. DOI:10.1007/s10953-024-01378-4
  62. Yasir, N., Khan, A.S., Akbar, N., Hassan, M.F., Ibrahim, T.H., Khamis, M., Siddiqui, R., Khan, N.A. & Nancarrow, P. (2022). Amine-based deep eutectic solvents for alizarin extraction from aqueous media. Processes, 10, 794. DOI:10.3390/pr10040794
  63. Zahid, M., Ahmad, H., Drioli, E., Rehan, Z.A., Rashid, A., Akram, S. & Khalid, T. (2021). Role of polymeric nanocomposite membranes for the removal of textile dyes from wastewater. Aquananotechnology, Application of Nanomaterials for Water Purification, pp. 91-103. DOI:10.1016/B978-0-12-821141-0.00006-9
  64. Zhang, H., Zheng, Y., Wang, H. & Chang, N. (2024). Preparation of starch-based adsorbing-flocculating bifunctional material St-A/F and its removal of active, direct and disperse dyes from textile printing and dyeing wastewater. Polymer Bulletin, 81, pp. 2777-2800. DOI:10.1007/s00289-023-04864-9
  65. Zhao, Q., Wu, F., Shih, A. A., Fung, C. K., Gao, P. Y. & Liu, M. X. (2024). Enhancing separation of Y(III) from Sr(II) using tributyl phosphate in a novel deep eutectic solvent media. The American Institute of Chemical Engineers Journal, e18552. DOI:10.1002/aic.18552
Go to article

Authors and Affiliations

Małgorzata A. Kaczorowska
1
ORCID: ORCID
Daria Bożejewicz
1
ORCID: ORCID

  1. Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Bydgoszcz, Poland

This page uses 'cookies'. Learn more