Search results

Filters

  • Journals
  • Autorzy
  • Słowa kluczowe
  • Data
  • Typ

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Most researchers have explored noise reduction effects based on the transfer matrix method and the boundary element method. However, maximum noise reduction of a plenum within a constrained space, which frequently occurs in engineering problems, has been neglected. Therefore, the optimum design of multi-chamber plenums becomes essential. In this paper, two kinds of multi-chamber plenums (Case I: a two-chamber plenum that is partitioned with a centre-opening baffle; Case II: a three-chamber plenum that is partitioned with two centre-opening baffles) within a fixed space are assessed. In order to speed up the assessment of optimal plenums hybridized with multiple partitioned baffles, a simplified objective function (OBJ) is established by linking the boundary element model (BEM, developed using SYSNOISE) with a polynomial neural network fit with a series of real data – input design data (baffle dimensions) and output data approximated by BEM data in advance. To assess optimal plenums, a genetic algorithm (GA) is applied. The results reveal that the maximum value of the transmission loss (TL) can be improved at the desired frequencies. Consequently, the algorithm proposed in this study can provide an efficient way to develop optimal multi-chamber plenums for industry.
Go to article

Authors and Affiliations

Ying-Chun Chang
Ho-Chih Cheng
Min-Chie Chiuminchie
Yuan-Hung Chien
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to compare nitrogen dioxide atmspheric pollution in some parts of Cracow and to indicate the area in which ambient air concentration of N02 may be the highest. The measurements of 24- hour N02 concentrarion were made by spectrophotometric method with passive sampling in 20 sites in the period of 2 years. The results were analysed by statistical methods, such as: analysis of variance and correlation. The 24-hour NO, concentration has significant spatial variation in the area of Cracow. The highest values were measured in the street canyons, the lowest in residential areas. The highest values of N02 concentration were observed during heating season. The results of passive method are comparable with the results of authomatic method and because of this both methods may be use together in monitoring networks.
Go to article

Authors and Affiliations

Katarzyna Kromka
Download PDF Download RIS Download Bibtex

Abstract

Due to the occurrence of zinc and lead ore deposits in dolomite rocks, the sphalerite concentrates obtained from these ores contain an admixture of dolomite. In practice, a substantial amount of magnesium included in zinc ores passes to the last production stage, i.e. zinc electrolysis. The magnesium present in electrolyte impairs electrical conductance and appears in the technical and economical indexes. This paper deals the attempts to remove magnesium removal from initial sphalerite concentrates by means of chemical flotation using spent electrolyte derived from zinc electrolysis. The authors attempt to substantiate the existing relationships, as well as to derermine the optimum conditions for the procedure suggested. The leaching efficiency of magnesium amounted to about 80%, and is dependent upon the stage of the leaching. Losses of zinc were below 2%, and the magnesium concentration in solution amounted to about 20%. These solution can produce magnesium and zinc, which will be presented in the following paper.

Go to article

Authors and Affiliations

Andrzej Jarosiński
Adam Kozak
Sylwester Żelazny
Piotr Radomski
Download PDF Download RIS Download Bibtex

Abstract

Our study involved the first-ever evaluation of the performance of anther culture and wheat × maize hybridization techniques in producing haploids or doubled haploids as a result of spontaneous doubling of the chromosome number during androgenesis in plants from 30 wheat genotypes including ancient, local and modern types. The results indicated that the best induction rates of androgenic structures and haploid embryos for the hexaploid and tetraploid wheat genotypes were obtained with anther culture and wheat × maize hybridization, respectively. Whereas only one regenerated plant from 15 genotypes of tetraploid wheat was obtained, 13 plants were regenerated from 15 genotypes of hexaploid wheat. Moreover, haploid embryos obtained in wheat × maize hybridization 60 and 100% green plants regenerated in relation to the number of the cultured haploid embryos. Genotypes with high induction capacity to produce androgenic structure or haploid embryos did not have desired haploid plantlets regeneration capacity and vice-versa. However, with both methods, hexaploid wheat genotypes had a considerable ability to produce green plants. Doubled haploid plants were obtained from ancient and local wheat genotypes by both methods, but not from modern wheat. Those genotypes can be used as parents in future wheat breeding programs and new varieties may be obtained by selecting pure lines in wheat populations
Go to article

Authors and Affiliations

Gamze Gurtay
1
Imren Kutlu
2
Suleyman Avci
3

  1. Eskisehir Osmangazi University, Faculty of Agriculture, Department of Field Crops, 26160 Eskisehir, Turkey
  2. Eskisehir Osmangazi University, Faculty of Agriculture, Department of Biosystem Engineering, 26160 Eskisehir, Turkey
  3. 1Eskisehir Osmangazi University, Faculty of Agriculture, Department of Field Crops, 26160 Eskisehir, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The employment of green synthesized nanomaterials for water pollution prevention is increasing nowadays. Herein, Mn-doped ZnO nanoparticles were synthesized using Peganum Harmala seed extract and subsequently used for crystal violet (CV) dye removal from aqueous solutions. The first part of the study describes the preparation of the adsorbent (Mn-ZnO NPs) using a simple coprecipitation method. The surface properties of the material were characterized by Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The second part investigates the adsorption of CV dye onto the surface of the prepared Mn-ZnO NPs. Additionally, the isotherm,kinetics, and thermodynamics of the adsorption process were studied in detail. Batch adsorption analysis was carried out by evaluating different parameters, such as the amount of the adsorbent (0.01g to 0.04 g), CV concentration (20 to 80 mg/L), adsorption time (30 to 120 min), and temperature (35 to 65 ⁰C). The maximum CV dye adsorption capacity of the Mn-ZnO NPs was 45.60 mg/g. The thermodynamic study revealed the spontaneous, exothermic, and feasible nature of the adsorption process, primarily driven by physical forces. Kinetic and isotherm analyses indicated that the adsorption of the dye best fit the Freundlich isotherm and pseudo-second-order models, respectively. Mn-doped ZnO is considered an effective adsorbent for CV, benefiting from its rapid and easy preparation, non-toxic nature, and 94 % adsorption efficiency. The material holds potential for future applications in the removal of organic dyes from wastewater.
Go to article

Bibliography

  1. Aboud, A. A., Bukhari, Z. & Al-Ahmadi, A. N. (2023). Enhancement of UV detection properties of ZnO thin films via Ni doping. Physica Scripta, 98(6), 065938. DOI:10.1088/1402-4896/acd284
  2. Aboud, A. A., Shaban, M. & Revaprasadu, N. (2019). Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films. RSC Advances, 9(14), pp. 7729–7736. DOI:10.1039/C8RA10599E
  3. Ahmadi, S. & Ganjidoust, H. (2021). Using banana peel waste to synthesize BPAC/ZnO nanocomposite for photocatalytic degradation of Acid Blue 25: Influential parameters, mineralization, biodegradability studies. Journal of Environmental Chemical Engineering, 9(5), 106010. DOI:10.1016/J.JECE.2021.106010
  4. Ahmed, S. A. (2017). Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics, 7, pp. 604–610. DOI:10.1016/j.rinp.2017.01.018
  5. Aigbe, U. O. & Osibote, O. A. (2024). Green synthesis of metal oxide nanoparticles, and their various applications. Journal of Hazardous Materials Advances, 13, 100401. DOI:10.1016/J.HAZADV.2024.100401
  6. Al-Kahlout, A. (2012). ZnO nanoparticles and porous coatings for dye-sensitized solar cell application: Photoelectrochemical characterization. Thin Solid Films, 520(6), pp, 1814–1820. DOI:10.1016/j.tsf.2011.08.095
  7. Alsaiari, R. (2022). Removal of cobalt (II) ions from aqueous solution by Peganum Harmala seeds. Indian Journal of Chemical Technology (Vol. 29).
  8. Alsaiari, R., Alqadri, F., Shedaiwa, I. & Alsaiari, M. (2021). Peganum Harmala plant as an adsorbent for the removal of Copper(II) ions from water. In Indian Journal of Chemical Technology (Vol. 28).
  9. Alsaiari, R., Shedaiwa, I., Al-Qadri, F. A., Musa, E. M., Alqahtani, H., Alkorbi, F., Alsaiari, N. A. & Mohamed, M. M. (2024). Peganum Harmala L. plant as green non-toxic adsorbent for iron removal from water. Archives of Environmental Protection, 50(1), pp. 3–12. DOI:10.24425/aep.2024.149894
  10. Aregawi, B. H. & Mengistie, A. A. (2013). Removal of Ni(II) from aqueous solution using leaf, bark and seed of moringa stenopetala adsorbents. Bulletin of the Chemical Society of Ethiopia, 27(1), pp. 35–47. DOI:10.4314/bcse.v27i1.4
  11. Bououdina, M., Omri, K., El-Hilo, M., El Amiri, A., Lemine, O. M., Alyamani, A., Hlil, E. K., Lassri, H. & El Mir, L. (2014). Structural and magnetic properties of Mn-doped ZnO nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 56, pp. 107–112. DOI:10.1016/j.physe.2013.08.024
  12. Castañeda, D., Muñoz H., G. & Caldiño, U. (2005). Local structure determination of Mn2+ in CaCl 2:Mn2+ by optical spectroscopy. Optical Materials, 27(8), pp. 1456–1460. DOI:10.1016/j.optmat.2004.10.009
  13. Chen, L., Cui, Y., Xiong, Z., Zhou, M. & Gao, Y. (2019). Chemical functionalization of the ZnO monolayer: Structural and electronic properties. RSC Advances, 9(38), pp. 21831–21843. DOI:10.1039/c9ra03484f
  14. Darroudi, M., Sabouri, Z., Kazemi Oskuee, R., Khorsand Zak, A., Kargar, H. & Hamid, M. H. N. A. (2013). Sol-gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceramics International, 39(8), pp. 9195–9199. DOI:10.1016/j.ceramint.2013.05.021
  15. Elsayed, A. E., Osman, D. I., Attia, S. K., Ahmed, H. M., Shoukry, E. M., Mostafa, Y. M. & Taman, A. R. (2020). A study on the removal characteristics of organic and inorganic pollutants from wastewater by low cost biosorbent. Egyptian Journal of Chemistry, 63(4), pp. 1429–1442. DOI:10.21608/ejchem.2019.15710.1950
  16. Fahmy, S. A., Fawzy, I. M., Saleh, B. M., Issa, M. Y., Bakowsky, U. & Azzazy, H. M. E. S. (2021). Green synthesis of platinum and palladium nanoparticles using Peganum harmala L. Seed alkaloids: Biological and computational studies. Nanomaterials, 11(4). DOI:10.3390/nano11040965
  17. Fekri, R., Mirbagheri, S. A., Fataei, E., Ebrahimzadeh-Rajaei, G. & Taghavi, L. (2022). Green synthesis of CuO nanoparticles using Peganum harmala extract for photocatalytic and sonocatalytic degradation of reactive dye and organic compounds. Main Group Chemistry, 21(4), pp. 975–996. DOI:10.3233/MGC-220045
  18. Freundlich, H. M. F. (1906). Over the adsorption in solution. J. Phys. Chem, 57, pp. 385–471.
  19. Ghasemi, M., Ghasemi, N., Zahedi, G., Alwi, S. R. W., Goodarzi, M. & Javadian, H. (2014). Kinetic and equilibrium study of Ni(II) sorption from aqueous solutions onto Peganum harmala-L. International Journal of Environmental Science and Technology, 11(7), pp. 1835–1844. DOI:10.1007/s13762-014-0617-9
  20. Gul, S., Afsar, S., Gul, H. & Ali, B. (2023). Removal of crystal violet dye from wastewater using low-cost biosorbent Trifolium repens stem powder. Journal of the Iranian Chemical Society, 20(11), pp. 2781–2792. DOI:10.1007/s13738-023-02875-x
  21. Homagai, P. L., Poudel, R., Poudel, S. & Bhattarai, A. (2022). Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon, 8(4). DOI:10.1016/j.heliyon.2022.e09261
  22. Jadoun, S., Yáñez, J., Aepuru, R., Sathish, M., Jangid, N. K. & Chinnam, S. (2024). Recent advancements in sustainable synthesis of zinc oxide nanoparticles using various plant extracts for environmental remediation. Environmental Science and Pollution Research, 31(13), pp. 19123–19147. DOI:10.1007/s11356-024-32357-3
  23. Kasbaji, M., Ibrahim, I., Mennani, M., abdelatty abuelalla, O., fekry, S. S., Mohamed, M. M., Salama, T. M., Moneam, I. A., Mbarki, M., Moubarik, A. & Oubenali, M. (2023). Future trends in dye removal by metal oxides and their Nano/Composites: A comprehensive review. Inorganic Chemistry Communications, 158, 111546. DOI:DOI:10.1016/j.inoche.2023.111546
  24. Khan, Z. R., Khan, M. S., Zulfequar, M. & Shahid Khan, M. (2011). Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method. Materials Sciences and Applications, 02(05), pp. 340–345. DOI:10.4236/msa.2011.25044
  25. Kumar, P. & Kirthika, K. (2010). Kinetics and equilibrium studies of Zn2+ ions removal from aqueous solutions by use of natural waste. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(1), 264.
  26. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), pp. 2221–2295. DOI:10.1021/ja02268a002
  27. Lemecho, B. A., Sabir, F. K., Andoshe, D. M., Gultom, N. S., Kuo, D. H., Chen, X., Mulugeta, E., Desissa, T. D. & Zelekew, O. A. (2022). Biogenic Synthesis of Cu-Doped ZnO Photocatalyst for the Removal of Organic Dye. Bioinorganic Chemistry and Applications. DOI:10.1155/2022/8081494
  28. Liu, Y. X., Liu, Y. C., Shen, D. Z., Zhong, G. Z., Fan, X. W., Kong, X. G., Mu, R. & Henderson, D. O. (2002). Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica. Solid State Communications, 121(9–10), pp. 531–536. DOI:10.1016/S0038-1098(02)00006-6
  29. Mandal, S. K., Das, A. K., Nath, T. K. & Karmakar, D. (2006). Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles. Applied Physics Letters, 89(14). DOI:10.1063/1.2360176
  30. Mehar, S., Khoso, S., Qin, W., Anam, I., Iqbal, A. & Iqbal, K. (2019). Green Synthesis of Zincoxide Nanoparticles from Peganum harmala, and its biological potential against bacteria. Frontiers in Nanoscience and Nanotechnology, 6(1). DOI:10.15761/fnn.1000188
  31. Mote, D.V., Dargad, J.S. & Dole, B.N. (2013). Effect of Mn Doping Concentration on Structural, Morphological and Optical Studies of ZnO Nano-particles. Nanoscience and Nanoengineering, 1(2), pp. 116–122. DOI:10.13189/nn.2013.010204
  32. Owoeye, S. S., Toludare, T. S., Isinkaye, O. E. & Kingsley, U. (2019). Influence of waste glasses on the physico-mechanical behavior of porcelain ceramics. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 58(2), pp. 77–84). DOI:10.1016/j.bsecv.2018.07.002
  33. Paksamut, J. & Boonsong, P. (2018). Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents. IOP Conference Series: Materials Science and Engineering, 317(1). DOI:10.1088/1757-899X/317/1/012058
  34. Paraguay, F., Estrada, W., Acosta, D. R., Andrade, E. & Miki-Yoshida, M. (1999). Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films, 350, pp. 192–202.
  35. Park, D., Lim, S. R., Yun, Y. S. & Park, J. M. (2008). Development of a new Cr(VI)-biosorbent from agricultural biowaste. Bioresource Technology, 99(18), pp. 8810–8818. DOI:10.1016/J.BIORTECH.2008.04.042
  36. Seetawan, U., Jugsujinda, S., Seetawan, T., Ratchasin, A., Euvananont, C., Junin, C., Thanachayanont, C. & Chainaronk, P. (2011). Effect of Calcinations Temperature on Crystallography and Nanoparticles in ZnO Disk. Materials Sciences and Applications, 02(09), pp. 1302–1306. DOI:10.4236/msa.2011.29176
  37. Shaba, E. Y., Jacob, J. O., Tijani, J. O. & Suleiman, M. A. T. (2021). A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Applied Water Science. 11, 48. DOI:10.1007/s13201-021-01370-z
  38. Sharaf, G. & Hassan, H. (2014). Removal of copper ions from aqueous solution using silica derived from rice straw: Comparison with activated charcoal. International Journal of Environmental Science and Technology, 11(6), pp. 1581–1590. DOI:10.1007/s13762-013-0343-8
  39. Singh, B., Shrivastava, S. B. & Ganesan, V. (2016). Effects of Mn Doping on Zinc Oxide Films Prepared by Spray Pyrolysis Technique. International Journal of Nanoscience, 15(3), 1650024-1–8. DOI:10.1142/S0219581X16500241
  40. Solmaz, A., Turna, T. & Baran, A. (2024). Ecofriendly synthesis of selenium nanoparticles using agricultural Citrus fortunella waste and decolourization of crystal violet from aqueous solution. The Canadian Journal of Chemical Engineering, 102(6), pp. 2051–2067. DOI:10.1002/cjce.25179
  41. Sriram, S., Lalithambika, K.C. & Thayumanavan, A. (2017). Experimental and theoretical investigations of photocatalytic activity of Cu doped ZnO nanoparticles. Optik, 139, pp. 299–308. DOI:10.1016/J.IJLEO.2017.04.013
  42. Taha, A. A., Ahmed, A. M., Abdel Rahman, H. H., Abouzeid, F. M. & Abdel Maksoud, M. O. (2017). Removal of nickel ions by adsorption on nano-bentonite: Equilibrium, kinetics, and thermodynamics. Journal of Dispersion Science and Technology, 38(5), pp. 757–767. DOI:10.1080/01932691.2016.1194211
  43. Theyvaraju, D. & Muthukumaran, S. (2015). Preparation, structural, photoluminescence and magnetic studies of Cu doped ZnO nanoparticles co-doped with Ni by sol–gel method. Physica E: Low-Dimensional Systems and Nanostructures, 74, pp. 93–100. DOI:10.1016/J.PHYSE.2015.06.012
  44. Trari, M., Töpfer, J., Dordor, P., Grenier, J. C., Pouchard, M. & Doumerc, J. P. (2005). Preparation and physical properties of the solid solutions Cu 1+xMn1-xO2 (0≤x≤0.2). Journal of Solid State Chemistry, 178(9), pp. 2751–2758. DOI:10.1016/j.jssc.2005.06.009
  45. Ullah, I., Rauf, A., Khalil, A. A., Luqman, M., Islam, M. R., Hemeg, H. A., Ahmad, Z., Al-Awthan, Y. S., Bahattab, O. & Quradha, M. M. (2024). Peganum harmala L. extract-based Gold (Au) and Silver (Ag) nanoparticles (NPs): Green synthesis, characterization, and assessment of antibacterial and antifungal properties. Food Science and Nutrition. 12(6), pp.4459-4472. DOI:10.1002/fsn3.4112
  46. Yang, Z., Ye, Z., Xu, Z. & Zhao, B. (2009). Effect of the morphology on the optical properties of ZnO nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 42(2), pp. 116–119. DOI:10.1016/j.physe.2009.09.010
  47. Yildirimcan, S., Ocakoglu, K., Erat, S., Emen, F. M., Repp, S. & Erdem, E. (2016). The effect of growing time and Mn concentration on the defect structure of ZnO nanocrystals: X-ray diffraction, infrared and EPR spectroscopy. RSC Advances, 6(45), pp. 39511–39521. DOI:10.1039/c6ra04071c
  48. Zafar, M. N., Dar, Q., Nawaz, F., Zafar, M. N., Iqbal, M. & Nazar, M. F. (2019). Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. Journal of Materials Research and Technology, 8(1), pp. 713–725. DOI:10.1016/j.jmrt.2018.06.002
  49. Zhu, Z., Zhao, S. & Wang, C. (2022). Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review. MDPI Molecules, 27(13). DOI:10.3390/molecules27134161
Go to article

Authors and Affiliations

Faeza Alkorbi
1
ORCID: ORCID
Fatima A. Al-Qadri
2
ORCID: ORCID

  1. Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
  2. Department of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen

This page uses 'cookies'. Learn more