The article describes how to identify the boundary and yield surface for hypoplastic constitutive equations proposed by Wu, Gudehus and Bauer. It is shown how to identify and plot the surfaces for any equation in this class. Calculation errors are analyzed characteristic for applied set of numerical formulas. In the paper there are computer links to the source code prepared in the MATLAB system, based on instructions in the article. A sample consitutive domains are shown, plotted using the attached computer program.
Green-geo-engineering with geosynthetic reinforced soil structures is of increasing practice around the world. Poland is among the leading countries with the third biggest geogrid market in Europe. The German EBGEO 2010 Guideline for Soil Reinforcement with Geosynthetics as first European Guideline for Geosynthetics linked to the Eurocode 7, and the new design code for Japanese railway structures under seismic loading are introduced. New research results from the Geotechnical Institute of the RWTH Aachen, Germany, dealing with the soil/reinforcement interaction and new approaches for design codes for the reinforcement of base courses in traffic areas based on lab and field tests in the USA are presented.
The problem of consolidation of soil has been widely investigated. The basic approach was given by Terzaghi who assumed soil of constant physical and mechanical parameters. In the case of peat consolidation, the permeability coefficient of soil and the elasticity modulus are functions of the settlement which is an important additional factor. The model proposed here assumes varying the elasticity and permeability coefficients. Moreover, the settlement is described by the so-called elementary curve which was approximated empirically based upon laboratory tests. The model allows to consider the case when the filtration in the peat body goes in horizontal direction. It happens so when the charging layer does not receive outgoing water from the pores. The model includes also the case when the load involving consolidation varies in time i.e. the charging layer grows up gradually. The model has been applied practically in several cases and it comes that there is a good agreement between calculated and measured settlement of the consolidated peat layer.
A certain non-linear differential equation containing a power of unknown function being the solution is considered with application to selected geotechnical problems. The equation can be derived to a linear differential equation by a proper substitution and properties of operations G and S.
This paper presents simulation results of the consolidation process of the flotation waste landfill “Żelazny Most”. The mathematical model used in presented research is based on Biot’s model of consolidation and is extended with rheological skeleton. The load is the mass pressure of the landfill itself. The initial point selected for calculations was based on the ground water level calculated in a landfill. The creeping process in this waste landfill was analyzed along the north – south section. The solution is therefore 2D with the assumption of a plane strain state. Effective model parameters data were obtained in laboratory tests on the material from the waste landfill. Results obtained for a stress state in a storage state can help to determine whether the adopted linear model of visco-elastic medium does not lead to changes in the Coulomb – Mohr potential yield, showing the emergence of plasticity of material storage areas.
This paper compares numerical solutions of transient two-dimensional unsaturated flow equation by using different averaging schemes for internodal conductivities. Averaging methods such as arithmetic mean, geometric mean, upstream weighting, and integrated mean are taken into account, as well as a recent approach based on steady-state approximation. The latter method proved the most flexible, producing relatively accurate solutions for both downward and upward flow cases.
The paper deals with the properties and microstructure of Reactive Powder Concrete (RPC), which was developed at Cracow University of Technology. The influence of three different curing conditions: water (W), steam (S) and autoclave (A) and also steel fibres content on selected properties of RPC was analyzed. The composite characterized by w/s ratio equal to 0.20 and silica fume to cement ratio 20%, depending on curing conditions and fibres content, obtained compressive strength was in the range from 200 to 315 MPa, while modulus of elasticity determined during compression was about 50 GPa. During three-point bending test load-deflection curves were registered. Base on aforementioned measurements following parameters were calculated: flexural strength, stress at limit of proportionality (LOP), stress at modulus of rapture (MOR), work of fracture (WF), and toughness indices I₅, I₁₀ and I₂₀. Both amount of steel fibres and curing conditions influence the deflection of RPC during bending.
Submission of articles for publication in the journal Archives of Civil Engineering should be made via the website: