Self-curing concrete SC is a concrete type that can be cured without using any external curing regimes. It can perform by several methods such as using lightweight aggregate or chemical agents. In this research chemical curing agent is used to produce SC. This paper reports the results of a research study conducted to evaluate the effect of sulfates on the performance of self-curing concrete compared to ordinary concrete. Samples are immersed in sodium sulfate Na2S04 solution of 4% concentration. Results are measured in terms of compressive strength, tensile strength, flexural strength and mass loss. It was found that the rate of strength loss is noticed at ordinary concrete compared to SC concrete. Sulfate resistance is improved when using self-curing concrete. This improvement appears to be dependent on using a chemical curing agent.
This paper presents application of optical microscope for evaluation of microtexture changes of coarse aggregate during simulated polishing in laboratory. Observations of the apparent changes on surfaces of seven different aggregates are presented. Simulation polishing of aggregate was performed in accordance with PN-EN 1097-8:2009. lmages of the aggregate surface were taken with the optical microscope in the reflection mode in particular stages of polishing. Digital images were analyzed. Standard deviation was determined on the basis of the histogram of intensities from digital images of the surfaces of aggregate grains which was assurned as the measure of changes in microtexture during simulated polishing (namely the σh parameter). Statistical analysis has shown that the changes of the σh parameter between the particular stages of polishing confirm certain trends related to the petrographic characteristic of the rocks. Aggregates which included minerals of similar hardness (granodiorite, dolomile, basalt) were more prone to polishing than gabbro and postglacial. Regeneration of the microtexture, the recovery to its original asperity, occurred in the case of quartz sandstone and steelmaking slag.
Author explains a necessity of supply optimization to construction sites with small storage areas. This paper takes account of conditions existing in Poland. From among all factors discussed by the author, first of all, we should point at construction works on plots located in densely built-up areas, obtained by demolition of existing buildings, as well as a necessity of plots utilization after demolished buildings that technical conditions do not allow for further exploitation.
The aim of this paper is to present an assessment of the slip influence on the deflection of the steel plate-concrete composite beams, which are a new type of a design concept. The proposed method is based on the procedure included in the PN-EN 1992-1-1, which has been modified with taking into consideration interface slip. The theoretical analysis was verified by experimental studies.
The article presents the ideas of flexible design in the construction sector. Flexibility in the construction sector was discussed and defined between typical and flexible approaches to design. The idea applied during the economic effectiveness analysis of construction projects was introduced. The issue of flexibility was discussed based on the example of construction of a sports facility - The National Stadium in Warsaw. An effectiveness analysis was applied for variant solutions.
The paper present the concept of stability assessing the of solutions which are construction schedules. Rank have been obtained through the use of task scheduling rules and the application of the KASS software. The aim of the work is the choice of the equivalent solution in terms of the total time of the project. The selected solution optimization task should be characterized by the highest resistance to harmful environmental risk factors. To asses the stability of schedule simulation technique was used.
Introduction of polymers into the cement composites improves same of the properties of concretes and mortars. Therefore, the polymer-cement composites are successfully used in construction. The model of microstructure formation in cement composites modified with thermoplastic polymer (pre-mix modifiers) has already been developed and successfully implemented. However, the formation of microstructure in the case of epoxy-cement composites (containing post-mix modifier) demonstrates same peculiarities which should be taken into account when modelling the process. The microstructure of epoxy-cement composites and its formation is discussed in the paper. The model is offered, formulated on the basis of the microscopic observations and results of testing.
The subject of the analytical and experimental studies therein is of two metal seven-layer beam - plate bands. The first beam - plate band is composed of a lengthwise trapezoidally corrugated main core and two crosswise trapezoidally corrugated cores of faces. The second beam - plate band is composed of a crosswise trapezoidally corrugated main core and two lengthwise trapezoidally corrugated cores offaces. The hypotheses of deformation of a normal to the middle surface of the beams after bending are formulated. Equations of equilibrium are derived based on the theorem of minimum total potential energy. Three-point bending of the simply supported beams is theoretically and experimentally studied. The deflections of the two beams are determined with two methods, compared and presented.
Accommodation tourist industry is characterized by high variability. For this category of services not only the location is crucial- that does not change, but also the standard, prices and seasonality of services. In the recent years, leisure centers performing functions only during the summer time have seen the possibility to extend their activities beyond the summer months. The reasons for this are the local investments requiring qualified staff which comes from different parts of the country, Europe and the world while creating dernand for accommodations. To meet the possible demand needs and to adapt to cold season, performing thermo-modernization works is necessary. In order to find the best solution and answer those needs, analysis of the profitability of the investrnents in a chosen holiday resort was carried out. The article presents the results of the analysis based on the payback period, LCC analysis and assessment of the investments risk.
The paper presents an approach to evaluating a building throughout its whole life cycle in relation to its sustainable development. It describes basic tools and techniques of evaluating and analysing the costs in the whole life cycle of the building, such as Life Cycle Assessment, Life Cycle Management, Life Cycle Cost and Social Life Cycle Assessment. The aim of the paper is to propose a model of cost evaluation throughout the building life cycle. The model is based on the fuzzy sets theory which allows the calculations to include the risks associated with the sustainable development, with the management of the investment and with social costs. Costs incurred in the subsequent phases of the building life cycle are analysed and modelled separately by means of a membership function. However, the effect of the analysis is a global cost evaluation for the whole life cycle of the building.
The influence that general contractors and subcontractors have on the operation of a company is immense. Keeping this in mind, the authors have decided to develop and algorithm based on the analysis of partnering relations between construction companies that would select the best possible construction company for the purposes of cooperation. This algorithm, developed for a given construction company, is meant to support its decision-making system in the field of the selection of another construction company to cooperate with. The author has made references to earlier research, in which she had used the ELECTRE III method, and in which she bad analysed the possibility of applying the BIPOLAR method in order to solve the problem of the selection of a construction company to develop partnering relations with. The author provided an example of the calculations performed for a selection of construction companies.
This article aims to identify potential risk factors affecting the implementation and synchronisation of surveying and construction works during building and operation of roads. The task was executed on the basis of literature studies and experience. The article is an introduction to the research that has been conducted by the authors on the reasonably precise index of factors which one may deal with during the implementation of facilities of this type. The raised issue is crucial for financial and time reasons, but what is important in the roads construction - also for social ones, as prolonged traffic disruption adversely affects the environment.
Statistical conformity criteria for the compressive strength of concrete are a matter of debate. The criteria can have prejudicial effects on construction quality and reliability. Hence, the usefulness of statistical criteria for the small sample size n = 3 is questioned. These defects can cause a reduction in the quality of produced concrete and, consequently, too much risk for the recipient (investor). For this reason, the influence of conformity control on the value of the reliability index of concrete and reinforced concrete has been determined. The authors limited their consideration to the recommended standards PN-EN 206-1, PN-EN 1992 and ISO 2394 method of reliability index, which belongs to the analytical methods FORM (First Order Reliability Method). It assumes that the random variables are defined by two parameters of the normal distribution or an equivalent normal: the mean and the standard deviation. The impact of conformity control for n = 3 for concrete structures, designed according to the Eurocode 1992, for which the compressive strength of concrete is the capacity dominant parameter (sensitivity factor of dominating resistance parameter according to the FORM is 0.8), has been determined by evaluation of the reliability index.
Planning a construction project, the investor frequently faces the choice of the option of the planned investment. Assessment of options is difficult due to the complex nature of construction projects. Various methods of multicriteria evaluation are successfully applied in the assessment and analysis of options. For those methods to work, a handful of information must be prepared beforehand. Among others, it is necessary to establish the assessment criteria and determine their weight for specific cases. This stage is implemented in cooperation with experts. The results of evaluations, obtained on the basis of the experts' opinions, must be processed and prepared. The paper will discuss one possible option for assessing the experts' opinion.
Decision-making processes, including the ones related to ill-structured problems, are of considerable significance in the area of construction projects. Computer-aided inference under such conditions requires the employment of specific methods and tools (non-algorithmic ones), the best recognized and successfully used in practice represented by expert systems. The knowledge indispensable for such systems to perform inference is most frequently acquired directly from experts (through a dialogue: a domain expert - a knowledge engineer) and from various source documents. Little is known, however, about the possibility of automating knowledge acquisition in this area and as a result, in practice it is scarcely ever used. lt has to be noted that in numerous areas of management more and more attention is paid to the issue of acquiring knowledge from available data. What is known and successfully employed in the practice of aiding the decision-making is the different methods and tools. The paper attempts to select methods for knowledge discovery in data and presents possible ways of representing the acquired knowledge as well as sample tools (including programming ones), allowing for the use of this knowledge in the area under consideration.
Thin-walled bars currently applied in metal construction engineering belong to a group of members, the cross-section resistance of which is affected by the phenomena of local or distortional stability loss. This results from the fact that the cross-section of such a bar consists of slender-plate elements. The study presents the method of calculating the resistance of the cross-section susceptible to local buckling which is based on the loss of stability of the weakest plate (wall). The "Critical Plate" (CP) was identified by comparing critical stress in cross-section component plates under a given stress condition. Then, the CP showing the lowest critical stress was modelled, depending on boundary conditions, as an internal or cantilever element elastically restrained in the restraining plate (RP). Longitudinal stress distribution was accounted for by means of a constant, linear or non-linear (acc. the second degree parabola) function. For the critical buckling stress, as calculated above, the local critical resistance of the cross-section was determined, which sets a limit on the validity of the Vlasov theory. In order to determine the design ultimate resistance of the cross-section, the effective width theory was applied, while taking into consideration the assumptions specified in the study. The application of the Critical Plate Method (CPM) was presented in the examples. Analytical calculation results were compared with selected experimental findings. lt was demonstrated that taking into consideration the CP elastic restraint and longitudinal stress variation results in a more accurate representation of thin-walled element behaviour in the engineering computational model
The paper presents selected aspects of dynamic numerical simulations of an orthotropic steel railway bridge loaded by high-speed trains. The model of moving loads was adopted in accordance with the models set out in the applicable standards. The current European code requirements are referred in which the computer calculations of the dynamic response of the structure are the basis for assessing the suitability of the structure to carry high-speed rail traffic ( v > 160 km/h ). In this research the calculations are based on the author's method of generating traffic roads in Abaqus FEM environment. lt is emphasized in the paper that in most commercial FEM codes (including Abaqus), moving loads are not implemented in modules responsible for defining of loads. The author's approach to this issue allowed to obtain results confirming its adequacy. In the longer term, the authors will develop a plan to adapt this algorithm in order to generale traftic loads on bridges discretized as spatial and plane numerical models.
Submission of articles for publication in the journal Archives of Civil Engineering should be made via the website: