Applied sciences

Archives of Environmental Protection

Content

Archives of Environmental Protection | 2024 | 50 | 3

Download PDF Download RIS Download Bibtex

Abstract

Every year, millions of tons of plastic waste are dumped into the ocean from estuaries. The process of accumulating and converting plastic into microplastics (MPs) in this dynamic system has not received as much attention compared to the open-ocean region. Therefore, this study aimed at evaluating the seasonal variation in microplastic (MP) content at the Can Gio estuary, Vietnam, during the rainy and dry seasons of 2021 and 2022. Water, sediment, and biological samples were collected at four sites. MP contents ranged from 0.00134 ± 0.00043 to 0.00095 ± 0.00014 items/L in water surface samples, from 4.22 ± 0.46 to 2.44 ± 0.46 items/L in water column samples, and from 200 ± 13.68 to 90 ± 13.68items/kg in sediment samples. There was an interactive effect of seasonal fluctuation and the complex flow regime on the MP content. MP bioaccumulation in Saccostrea and Periophthalmodon schlosseri was 1.5 – 1.8 and 0.2 – 0.52 items/individual, respectively. The main MP shapes were fibers and fragments. The composition mainly consisted of polypropylene (45.45%), polyethylene (18.18%), polystyrene (9.09%) and other plastics (27.28%). The source of MPs can be projected from the macro-plastic stream accumulated at the sampling sites. This study found the presence of MPs in both seasons of the year, and the accumulation of MPs in this dynamic region is closely correlated with hydrological properties of the estuary.
Go to article

Bibliography

  1. Adomat, Y. & Grischek,T. (2021). Sampling and processing methods of microplastics in river sediments-A review. Science of the Total Environment 758:143691.
  2. Alam, F. C., Sembiring,E., Muntalif, B. S. & Suendo, V. (2019). Microplastic distribution in surface water and sediment river around slum and industrial area (case study: Ciwalengke River, Majalaya district, Indonesia). Chemosphere 224: pp.637-645. DOI:10.1016/j.chemosphere.2019.02.188.
  3. Bakir, A., Rowland, S. J. & Thompson, R. C. (2014). Enhanced desorption of persistent organic pollutants from microplastics under simulated physiological conditions. Environ Pollut. 185, pp. 16-23. DOI:10.1016/j.envpol.2013.10.007.
  4. Barrows, A.P.W., Neumann, C.A., Berger, M.L. & Shaw, S.D. (2017). Grab vs. neuston tow net: a microplastic sampling performance comparison and possible advances in the field. Analytical methods 9 (9), pp.1446-1453.
  5. Bhagwat, G., T., Tran, K. A. Lamb, D., Senathirajah, K., Grainge, I., O'Connor, W., Juhasz, A. & Palanisami, T. (2021). Biofilms Enhance the Adsorption of Toxic Contaminants on Plastic Microfibers under Environmentally Relevant Conditions. Environ. Sci. Technol. 55 (13), pp.8877-8887. DOI:10.1021/acs.est.1c02012.
  6. Bob-Manuel, FG. (2011). Food and feeding ecology of the mudskipper Periopthalmus koelreuteri (PALLAS) Gobiidae at Rumuolumeni creek, Niger Delta, Nigeria. Agriculture and Biology Journal of North America, 2 (6), pp. 897-901.
  7. Borges-Ramírez, M.M., Mendoza-Franco, E.F., Escalona-Segura, G. & Rendón-von Osten, J. (2020). Plastic density as a key factor in the presence of microplastic in the gastrointestinal tract of commercial fishes from Campeche Bay, Mexico. Environmental Pollution 267, 115659.
  8. Chen, C., Chen, L., Yao, Y.F., Huang, A. Q. & Zhang, W. (2019). Organotin Release from Polyvinyl Chloride Microplastics and Concurrent Photodegradation in Water: Impacts from Salinity, Dissolved Organic Matter, and Light Exposure. Environ. Sci. Technol. 53 (18), pp.10741-10752. DOI:10.1021/acs.est.9b03428.
  9. Chinfak, N., Sompongchaiyakul, P., Charoenpong, C., Shi, H., Yeemin, T. & Zhang, J. (2021). Abundance, composition, and fate of microplastics in water, sediment, and shellfish in the Tapi-Phumduang River system and Bandon Bay, Thailand. Sci. Total Environ. 781, 146700. DOI:10.1016/j.scitotenv.2021.146700.
  10. Cormier-Salem, M.-C., Van Trai, N., Burgos, A., Durand, J-D., Bettarel, Y., Klein, J., Huy,H.D. &Panfili, J. (2017). The mangrove's contribution to people: Interdisciplinary pilot study of the Can Gio Mangrove Biosphere Reserve in Viet Nam. Comptes Rendus Geoscience 349 (6-7), pp. 341-350.
  11. Crawford, C.B. & Quinn, B. (2017). Microplastic collection techniques, Microplastic Pollutants: Elsevier Science.
  12. Dalu, T. Ngomane, N., Dondofema, F. & Cuthbert, R.N. (2023). Water or sediment? Assessing seasonal microplastic accumulation from wastewater treatment works. H2Open Journal 6 (2), pp. 88-104. DOI:10.2166/h2oj.2023.017
  13. Danopoulos, E., Jenner, L. C., Twiddy, M. & Rotchell, J. M. (2020). Microplastic Contamination of Seafood Intended for Human Consumption: A Systematic Review and Meta-Analysis. Environ Health Perspect 128 (12), 126002. DOI:10.1289/EHP7171.
  14. Ding, L., Mao, R. F., Guo, X., Yang, X., Zhang, Q. & Yang, C. (2019). Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Sci Total Environ 667, pp. 427-434. DOI:10.1016/j.scitotenv.2019.02.332.
  15. Dodson, G. Z., Shotorban, A. K., Hatcher, P. G., Waggoner, D. C., Ghosal, S. & Noffke, N. (2020). Microplastic fragment and fiber contamination of beach sediments from selected sites in Virginia and North Carolina, USA. Mar Pollut Bull 151, 110869. DOI:10.1016/j.marpolbul.2019.110869.
  16. Eo, S., Hong, S. H., Song, .Y. K., Han, G. M. Seo, S. & Shim, W. J. (2021). Prevalence of small high-density microplastics in the continental shelf and deep sea waters of East Asia. Water Res 200, 117238. DOI:10.1016/j.watres.2021.117238.
  17. Fan, J., Zou, L., Duan, T., Qin, L., Qi, Z. & Sun, J. (2022). Occurrence and distribution of microplastics in surface water and sediments in China's inland water systems: a critical review. Journal of Cleaner Production 331, 129968.
  18. Fan, Y., Zheng, K., Zhu, Z., Chen, G.& Peng, X. (2019). Distribution, sedimentary record, and persistence of microplastics in the Pearl River catchment, China. Environ Pollut 251, pp. 862-870. DOI:10.1016/j.envpol.2019.05.056.
  19. Gola, D., Tyagi, P.K., Arya, A., Chauhan, N., Agarwal, M., Singh. S.K. & Gola, S. (2021). The impact of microplastics on marine environment: A review. Environmental Nanotechnology, Monitoring & Management, 16, 100552.
  20. GSO, Vietnam. 2021. Population and labour Statistics. edited by GENERAL STATISTICS OFFICE GSO VIETNAM.
  21. Guo, X., & Wang, J. (2019a). The chemical behaviors of microplastics in marine environment: A review. Mar Pollut Bull 142, pp. 1-14. DOI:10.1016/j.marpolbul.2019.03.019.
  22. Guo, X., & Wang, J. (2019b). Sorption of antibiotics onto aged microplastics in freshwater and seawater. Mar Pollut Bull, 149, 110511. DOI:10.1016/j.marpolbul.2019.110511.
  23. Han, M., Niu, X., Tang, M., Zhang, B. T., Wang, G., Yue, W., Kong, X. & Zhu, J. (2020). Distribution of microplastics in surface water of the lower Yellow River near estuary. Sci Total Environ, 707, 135601. DOI:10.1016/j.scitotenv.2019.135601.
  24. He, W., Liu, S., Zhang, W., Yi, K., Zhang, C., Pang, H., Huang, D., Huang, J. & Li, X. (2023). Recent advances on microplastic aging: Identification, mechanism, influence factors, and additives release. Sci Total Environ 889, 164035. DOI:10.1016/j.scitotenv.2023.164035.
  25. Hermsen, E., Mintenig, S. M., Besseling, E. & Koelmans, A. A. (2018). Quality Criteria for the Analysis of Microplastic in Biota Samples: A Critical Review. Environ Sci Technol 52 (18), pp. 10230-10240. DOI:10.1021/acs.est.8b01611.
  26. Horton, A. A., & Barnes, D. K. A. (2020). Microplastic pollution in a rapidly changing world: Implications for remote and vulnerable marine ecosystems. Sci Total Environ 738, 140349. DOI:10.1016/j.scitotenv.2020.140349.
  27. Huynh, P., Ngoc, H.H.T., Ngoc, T.N.L., Van, D. D. & Gia, H.T. (2021). Study on the level of microplastic pollution in water and sediment of Saigon-Dong Nai river. Journal of Hydrometeorology 731, pp. 69-81. (in Vietnamese)
  28. Ivar do Sul, J. A., & Costa, M. F. (2014). The present and future of microplastic pollution in the marine environment. Environ Pollut 185, pp. 352-364. DOI:10.1016/j.envpol.2013.10.036.
  29. Keerthika, K., Padmavathy, P., Rani, V., Jeyashakila, R., Aanand, S., Kutty, R., Tamilselvan, R. & Subash, P. (2023). Microplastics accumulation in pelagic and benthic species along the Thoothukudi coast, South Tamil Nadu, India. Mar Pollut Bull 189, 114735. DOI:10.1016/j.marpolbul.2023.114735.
  30. Khuyen, V.T.K., Le, D.V., Le, H.A., Fischer, A. R. & Dornack, C. (2022). Assessing Microplastic Prevalence and Dispersion from Saigon Urban Canals via Can Gio Mangrove Reserve to East Sea by Raman Scattering Microscopy. Microplastics 1 (3), pp. 536-553. DOI:10.3390/microplastics1030038
  31. Klangnurak, W., & Chunniyom, S. (2020). Screening for microplastics in marine fish of Thailand: the accumulation of microplastics in the gastrointestinal tract of different foraging preferences. Environ Sci Pollut Res Int 27 (21), pp. 27161-27168. DOI:10.1007/s11356-020-09147-8.
  32. Koelmans, A. A., Nor, N. H.M., Hermsen, E., Kooi, M., Mintenig, S. M. & France, JD. (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res 155, pp. 410-422. DOI:10.1016/j.watres.2019.02.054.
  33. Kye, H., Kim, J., Ju, S., Lee, J., Lim, C. & Yoon,Y. (2023). Microplastics in water systems: A review of their impacts on the environment and their potential hazards. Heliyon. e14359. DOI:10.1016/j.heliyon.2023.e14359
  34. Lahens, L., Strady, E., Kieu-Le, T. C., Dris, R., Boukerma, K., Rinnert, E., Gasperi, J. & Tassin, B. (2018). Macroplastic and microplastic contamination assessment of a tropical river (Saigon River, Vietnam) transversed by a developing megacity. Environ Pollut 236, pp. 661-671. DOI:10.1016/j.envpol.2018.02.005.
  35. Le, L.T. (2011). Hydrological characteristics according to topography and season in Can Gio mangrove biosphere reserve. Journal of Science, Can Tho University 17a, pp. 219-228. (in Vietnamese)
  36. Levin, L.A, Boesch, D.F., Covich, A., Dahm, C., Erséus, C., Ewel, K.C., Kneib, R.T., Moldenke, A., Palmer, M.A. & Snelgrove, P. (2001). The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4, pp. 430-451.
  37. Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., Li, D. & Shi, H. (2016). Microplastics in mussels along the coastal waters of China. Environ Pollut, 214, pp. 177-184. DOI:10.1016/j.envpol.2016.04.012.
  38. Li, Y., Lu, Z., Zheng, H., Wang, J. & Chen, C. (2020). Microplastics in surface water and sediments of Chongming Island in the Yangtze Estuary, China. Environmental Sciences Europe 32 (1), pp. 1-12.
  39. Liu, S., Chen, H., Wang, J., Su, L., Wang, X., Zhu,J. & Lan,W. (2021). The distribution of microplastics in water, sediment, and fish of the Dafeng River, a remote river in China. Ecotoxicol Environ Saf, 228,113009. DOI:10.1016/j.ecoenv.2021.113009.
  40. Masura, J., Baker, J., Foster, G. & , Courtney, A. (2015). Laboratory methods for the analysis of microplastics in the marine environment: recommendations for quantifying synthetic particles in waters and sediments. NOAA Technical Memorandum NOS-OR&R-48.
  41. Montoto-Martinez, T., Hernandez-Brito, J. J. & Gelado-Caballero, M. D. (2020). Pump-underway ship intake: An unexploited opportunity for Marine Strategy Framework Directive (MSFD) microplastic monitoring needs on coastal and oceanic waters. PLoS One 15 (5), e0232744. DOI:10.1371/journal.pone.0232744.
  42. Nam, V.N., Sinh, L.V., Miyagi, T., Baba, S. & Chan, HT. (2014). An overview of Can Gio district and mangrove biosphere reserve. Studies in Can Gio Mangrove Biosphere Reserve, Ho Chi Minh City, Vietnam Mangrove Ecosystems Technical Reports 6:1-7.
  43. Nhan, N.H. 2000. Evaluation of 3D residual flow in estuary using numerical model. Journal of Hydrometeorology 476, pp. 1-10. (in Vietnamese)
  44. Nguyen, T.N., Nhon, N.T.T., Hai, H.T.N., Chi, N.D.T. & Hien, T.T. (2022). Characteristics of Microplastics and Their Affiliated PAHs in Surface Water in Ho Chi Minh City, Vietnam. Polymers 14 (12), 2450.
  45. Pouvreau, S., Bodoy, A. & Buestel, D. (2000). In situ suspension feeding behaviour of the pearl oyster, Pinctada margaritifera: combined effects of body size and weather-related seston composition. Aquaculture 181 (1-2), pp. 91-113.
  46. Roman, L., Schuyler, Q., Wilcox, C. & Hardesty, B.D. (2021). Plastic pollution is killing marine megafauna, but how do we prioritize policies to reduce mortality? Conservation Letters 14 (2), e12781. DOI:10.1111/conl.12781
  47. Sathish, M.N., Jeyasanta, K.I. & Patterson,J. (2020). Monitoring of microplastics in the clam Donax cuneatus and its habitat in Tuticorin coast of Gulf of Mannar (GoM), India. Environmental Pollution 266,115219. DOI:10.1016/j.envpol.2020.115219
  48. Sharma, V. K., Ma, X., Guo, B. &. Zhang, K. (2021). Environmental factors-mediated behavior of microplastics and nanoplastics in water: A review. Chemosphere 271,129597. DOI:10.1016/j.chemosphere.2021.129597.
  49. Takarina, N.D, Purwiyanto, A.I.S. Rasud, A.A., Arifin, A.A. & Suteja, Y. (2022). Microplastic abundance and distribution in surface water and sediment collected from the coastal area. Global Journal of Environmental Science and Management 8 (2), pp. 183-196. DOI:10.22034/GJESM.2022.02.03
  50. Tirkey, A., & Upadhyay, L. S. B. (2021). Microplastics: An overview on separation, identification and characterization of microplastics. Mar Pollut Bull 170, 112604. DOI:10.1016/j.marpolbul.2021.112604.
  51. Tuan, V.Q. & Kuenzer, C. (2012). Can Gio Mangrove Biosphere Reserve Evaluation 2012 Current Status, Dynamics, and Ecosystem Services. IUCN
  52. Vu T. & Thu, H. (2019). Environmental Assessment and Flood Control in the Can Gio Bay Area located in the Lower Saigon River using Numerical Simulation Models in Context of Climate Change." Kyushu University Institutional Repository, https://catalog.lib.kyushu-u.ac.jp/opac_download_md/2534498/agr1018.pdf.
  53. Wang, J., Guo, . & Xue, J. (2021). Biofilm-Developed Microplastics As Vectors of Pollutants in Aquatic Environments. Environ Sci Technol 55, (19), pp. 12780-12790. DOI:10.1021/acs.est.1c04466.
  54. Wang, T., Zhao, S., Zhu, L., McWilliams, J.C. Galgani, L., Roswati Md Amin, R. M., Nakajima,R., Jiang, W. & Chen, M. (2022). Accumulation, transformation and transport of microplastics in estuarine fronts. Nature Reviews Earth & Environment 3 (11), pp. 795-805.
  55. World Bank Group. 2021. Market Study for Vietnam: Plastics Circularity Opportunities and Barriers. . In Marine Plastics Series. Washington, DC. World Bank.
  56. Xiong, X., Wu, C., Elser, J.J., Mei, Z., & Hao, Y. (2019). Occurrence and fate of microplastic debris in middle and lower reaches of the Yangtze River–from inland to the sea. Science of the Total Environment 659, pp. 66-73. DOI:10.1016/j.scitotenv.2018.12.313
  57. Zainuddin, A. H., Aris, A. Z., Zaki, M. R. M., Yusoff, F. M. & Wee, S.Y. (2022). Occurrence, potential sources and ecological risk estimation of microplastic towards coastal and estuarine zones in Malaysia. Mar Pollut Bull 174, 113282. DOI:10.1016/j.marpolbul.2021.113282.
  58. Zha, F., Shang, M., Ouyang, Z. & Guo, Z. (2022). The aging behaviors and release of microplastics: A review. Gondwana Research 108, pp. 60-71.
  59. Zhang, K., Xiong, X., Hu, H., Wu, C., Bi, Y., Wu, Y., Zhou,B., Lam, P. K. & Liu, J. (2017). Occurrence and Characteristics of Microplastic Pollution in Xiangxi Bay of Three Gorges Reservoir, China. Environ Sci Technol 51 (7), pp. 3794-3801. DOI:10.1021/acs.est.7b00369.
  60. Zhao, M., Zhang, T., Yang, X/., Liu, X., Zhu, D. & Chen, W. (2021). Sulfide induces physical damages and chemical transformation of microplastics via radical oxidation and sulfide addition. Water Res 197, 117100. DOI:10.1016/j.watres.2021.117100.
  61. Zhao, X., Wang, J., Leung, K. M.Y. & Wu, F. (2022). "olor: An Important but Overlooked Factor for Plastic Photoaging and Microplastic Formation. Environ Sci Technol 56 (13), pp. 9161-9163. DOI:10.1021/acs.est.2c02402.
  62. Zheng, Y., Li, J., Sun, C., Cao, W., Wang, M., Jiang, F. & Ju, P. (2021). Comparative study of three sampling methods for microplastics analysis in seawater. Sci Total Environ 765, 144495. DOI:10.1016/j.scitotenv.2020.144495.
  63. Zhuang, S. & Wang, J. (2023). Interaction between antibiotics and microplastics: recent advances and perspective." Science of The Total Environment:165414. DOI:10.1016/j.scitotenv.2023.165414
Go to article

Authors and Affiliations

Hoa Thi Pham
1
Tinh Quoc Pham
1
Ngoc Pham
1
Linh Ho Thuy Nguyen
2
Simon Cragg
3
Laura Michie
3

  1. International University, Vietnam National University - Ho Chi Minh City, Viet Nam
  2. Center for Innovative Materials & Architectures - Vietnam National University HCMC, Viet Nam
  3. Institute of Marine Sciences, Ferry Road, University of Portsmouth, PO4 9LY, United Kingdom
Download PDF Download RIS Download Bibtex

Abstract

This pilot study investigated the amounts of plastic litter captured by water structures. It is based on hydraulic experiments using flume models of the sluice gate and trash racks. Plastic elements of different shapes and sizes were introduced to the flume upstream of the water device. The study measured the number of plastic elements captured by the device. The outcomes of the study suggest that for each device, it should be possible to determine the size of elements beyond which they can capture plastic elements in substantial quantities. The findings should be helpful in designing future experiments on the capture of plastic elements by water structures
Go to article

Bibliography

  1. Alam, M. Z., Anwar, A. H. M. F., Sarker, D. C., Heitz, A. & Rothleitner, C. (2017). Characterising stormwater gross pollutants captured in catch basin inserts. Science of The Total Environment, 586, pp. 76–86. DOI:10.1016/j.scitotenv.2017.01.210
  2. Allison, R. A., F H, C. & McMahon, T. A. (1998). Trapping, strategies for gross pollutants Report 98/3, Cooperative Research Centre for Catchment Hydrology.
  3. Al-Zawaidah, H., Ravazzolo, D. & Friedrich, H. (2021). Macroplastics in rivers: present knowledge, issues and challenges. Environmental Science: Processes & Impacts, 23(4), pp. 535–552.
  4. Armitage, N. & Rooseboom, A. (2000). The removal of urban litter from stormwater conduits and streams: Paper 2 - Model studies of potential trapping structures. Water SA, 26(2), pp. 189–194.
  5. Dąbrowska, S. (2021). Zatykanie krat urządzeń wodnych przez elementy plastikowe (The interception of the plastic elements on the trash racks). MSc Thesis. Warsaw University of Life-Science (WULS-SGGW).
  6. Eerkes-Medrano, D., Thompson, R. C. & Aldridge, D. C. (2015). Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, pp. 63–82.
  7. Emmerik, T. & Schwarz, A. (2020). Plastic debris in rivers. WIREs Water, 7(1). DOI:10.1002/wat2.1398
  8. Enders, K., Lenz, R., Stedmon, C. A. & Nielsen, T. G. (2015). Abundance, size and polymer composition of marine microplastics≥ 10 μm in the Atlantic Ocean and their modelled vertical distribution. Marine Pollution Bulletin, 100(1), pp. 70–81.
  9. Gałka, M. (2021). Zatrzymywanie elementów plastikowych przy przepływie wody przez zasuwę (Interception of plastic elements at the sluice gate). MSc Thesis. Warsaw University of Life-Science (WULS-SGGW).
  10. González, D., Hanke, G., Tweehuysen, Gijsbert Bellert, B., Holzhauer, M., Palatinus, A., Hohenblum, P. & Lex, O. (2016). RIverine and Marine floating macro litter Monitoring and Modeling of Environmental LoadingEuropean Commission, Joint Research Center. http://mcc.jrc.ec.europa.eu/dev.py?N=simple&O=380&titre_page=RIMMEL&titre_chap=JRC Projects
  11. Helinski, O. K., Poor, C. J. & Wolfand, J. M. (2021). Ridding our rivers of plastic: A framework for plastic pollution capture device selection. Marine Pollution Bulletin, 165, 112095. DOI:10.1016/j.marpolbul.2021.112095
  12. Hitchcock, J. N. & Mitrovic, S. M. (2019). Microplastic pollution in estuaries across a gradient of human impact. Environmental Pollution, 247, pp. 457–466. DOI:10.1016/j.envpol.2019.01.069
  13. Honingh, D., van Emmerik, T., Uijttewaal, W., Kardhana, H., Hoes, O. & van de Giesen, N. (2020). Urban River Water Level Increase Through Plastic Waste Accumulation at a Rack Structure. Frontiers in Earth Science, 8, 28. DOI:/10.3389/feart.2020.00028
  14. Kaliszewicz, A., Winczek, M., Karaban, K., Kurzydłowski, D., Górska, M., Koselak, W. & Romanowski, J. (2020). The contamination of inland waters by microplastic fibres under different anthropogenic pressure: Preliminary study in Central Europe (Poland). Waste Management and Research, 0734242X20938448. DOI:10.1177/0734242X20938448
  15. Kubrak, E., Kubrak, J., Kiczko, A. & Kubrak, M. (2020). Flow measurements using a sluice gate; Analysis of applicability. Water, 12(3), 819.
  16. Kubrak, J., Kubrak, E., Kaca, E., Kiczko, A. & Kubrak, M. (2019). Theoretical and experimental analysis of operating conditions of a circular flap gate for an automatic upstream water level control. Water (Switzerland), 11(12). DOI:10.3390/w11122576
  17. Li, J., Liu, H. & Paul Chen, J. (2018). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362–374. DOI:10.1016/j.watres.2017.12.056
  18. Madhani, J. T. & Brown, R. J. (2015). The capture and retention evaluation of a stormwater gross pollutant trap design. Ecological Engineering, 74, pp. 56–59. DOI:10.1016/j.ecoleng.2014.09.074
  19. Marais, M., Armitage, N. & Pithey, S. (2001). A study of the litter loadings in urban drainage systems - methodology and objectives. Water Science and Technology, 44(6), pp. 99–108. DOI:10.2166/wst.2001.0350
  20. Shim, W. J., Hong, S. H. & Eo, S. (2018). Marine microplastics: Abundance, distribution, and composition. In E. Y. B. T.-M. C. [in] A. E. Zeng (Ed.), Microplastic Contamination in Aquatic Environments: An Emerging Matter of Environmental Urgency (pp. 1–26). Elsevier. DOI:10.1016/B978-0-12-813747-5.00001-1
  21. Sosinski, M. (1990). A litter & debris study of the Rahway river. Project No. 90-074A, Township of Cranford.
  22. Tibbetts, J., Krause, S., Lynch, I. & Sambrook Smith, G. H. (2018). Abundance, distribution, and drivers of microplastic contamination in urban river environments. Water, 10(11), 1597.
  23. van Emmerik, T., Strady, E., Kieu-Le, T. C., Nguyen, L. & Gratiot, N. (2019). Seasonality of riverine macroplastic transport. Scientific Reports, 9(1), pp. 1–9. DOI:10.1038/s41598-019-50096-1
  24. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature Methods, 17, pp. 261–272. DOI:10.1038/s41592-019-0686-2
  25. Yin, L., Jiang, C., Wen, X., Du, C., Zhong, W., Feng, Z., Long, Y. & Ma, Y. (2019). Microplastic pollution in surface water of urban lakes in Changsha, China. International Journal of Environmental Research and Public Health, 16(9), 1650. DOI:10.3390/ijerph16091650
Go to article

Authors and Affiliations

Sylwia Dąbrowska
1
Marcin Gałka
1
Elżbieta Kubrak
1
ORCID: ORCID
Janusz Kubrak
1
ORCID: ORCID
Marek Kalenik
1
ORCID: ORCID
Adam Kiczko
1
ORCID: ORCID

  1. Institute of Environmental Enginering, SGGW, Warsaw University of Life Sciences, Poland
Download PDF Download RIS Download Bibtex

Abstract

Pollution associated with microplastics (MP) over time is becoming a genuine cause of concern because these micro-sized plastics possess the ability to accumulate toxic contaminants of diverse types. Their propensity to absorb or adsorb pollutants from the surroundings increases the toxicity of microplastics. Multiple root causes lead to the accumulation of microplastics in aqueous ecosystems, necessitating specialized techniques for investigating, handling, and disposing of them. This overview elaborates on the several modes of degradation of microplastics in aquatic systems. It further provides insights into the novel ‘Microfluidics’ technique for detecting microplastics in marine environments. Additionally, as a rising hope for the degradation of microplastics through biofilm formation, distinct types of bacteria found in marine habitats are discussed in this paper. Finally, this review elucidates the problems associated with microplastic pollution in aquatic ecosystems and explores methods for their safe disposal in the future
Go to article

Bibliography

  1. Abdel-Aziz, S. M. & A, A. (2014b). Bacterial Biofilm: Dispersal and Inhibition Strategies. Scholarena Journal of Biotechnology, 1(1). DOI:10.18875/2375-6713.1.105
  2. Bakir, A., Rowland, S. J. & Thompson, R. C. (2012). Competitive sorption of persistent organic pollutants onto microplastics in the marine environment. Marine Pollution Bulletin, 64(12), pp. 2782–2789. DOI:10.1016/J.MARPOLBUL.2012.09.010
  3. Barboza, L. G. A., Dick Vethaak, A., Lavorante, B. R. B. O., Lundebye, A. K. & Guilhermino, L. (2018). Marine microplastic debris: An emerging issue for food security, food safety and human health. Marine Pollution Bulletin, 133(May), pp. 336–348. DOI:10.1016/j.marpolbul.2018.05.047
  4. Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M. & Packmann, A. I. (2016). The ecology and biogeochemistry of stream biofilms. [in] Nature Reviews Microbiology (Vol. 14, Issue 4, pp. 251–263). Nature Publishing Group. DOI:10.1038/nrmicro.2016.15
  5. Bremerstein, T., Potthoff, A., Michaelis, A., Schmiedel, C., Uhlmann, E., Blug, B. & Amann, T. (2015). Wear of abrasive media and its effect on abrasive flow machining results. Wear, 342–343, pp. 44–51. DOI:10.1016/j.wear.2015.08.013
  6. Chaukura, N., Kefeni, K. K., Chikurunhe, I., Nyambiya, I., Gwenzi, W., Moyo, W., Nkambule, T. T. I., Mamba, B. B. & Abulude, F. O. (2021). Microplastics in the Aquatic Environment—The Occurrence, Sources, Ecological Impacts, Fate, and Remediation Challenges. Pollutants, 1(2), pp. 95–118. DOI:10.3390/POLLUTANTS1020009
  7. Chen, C., Chen, L., Yao, Y., Artigas, F., Huang, Q. & Zhang, W. (2019). Organotin Release from Polyvinyl Chloride Microplastics and Concurrent Photodegradation in Water: Impacts from Salinity, Dissolved Organic Matter, and Light Exposure. Environmental Science and Technology, 53(18), pp. 10741–10752. DOI:10.1021/ACS.EST.9B03428/SUPPL_FILE/ES9B03428_SI_001.PDF
  8. Choi, J., Kang, M. & Jung, J. H. (2015). Integrated micro-optofluidic platform for real-time detection of airborne microorganisms. Scientific Reports, 5, pp. 1–10. DOI:10.1038/srep15983
  9. Corcoran, P. L. (2021). Degradation of Microplastics in the Environment. [in] Handbook of Microplastics in the Environment, pp. 1–12. Springer International Publishing. DOI:10.1007/978-3-030-10618-8_10-1
  10. De Tender, C., Devriese, L. I., Haegeman, A., Maes, S., Vangeyte, J., Cattrijsse, A., Dawyndt, P. & Ruttink, T. (2017). Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the North Sea. Environmental Science and Technology, 51(13), pp. 7350–7360. DOI:10.1021/ACS.EST.7B00697/SUPPL_FILE/ES7B00697_SI_001.PDF
  11. Demeter, M. A., Lemire, J. A., Mercer, S. M. & Turner, R. J. (2017). Screening selectively harnessed environmental microbial communities for biodegradation of polycyclic aromatic hydrocarbons in moving bed biofilm reactors. Bioresource Technology, 228, pp. 116–124. DOI:10.1016/J.BIORTECH.2016.12.086
  12. Dimassi, S. N., Hahladakis, J. N., Yahia, M. N. D., Ahmad, M. I., Sayadi, S. & Al-Ghouti, M. A. (2022). Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. Arabian Journal of Chemistry, 15(11), 104262. DOI:10.1016/J.ARABJC.2022.104262
  13. Elsayed, A. A., Erfan, M., Sabry, Y. M., Dris, R., Gaspéri, J., Barbier, J. S., Marty, F., Bouanis, F., Luo, S., Nguyen, B. T. T., Liu, A. Q., Tassin, B. & Bourouina, T. (2021). A microfluidic chip enables fast analysis of water microplastics by optical spectroscopy. Scientific Reports, pp. 1–11. DOI:10.1038/s41598-021-89960-4
  14. Farré, M. & Barceló, D. (2020). Microfluidic devices: biosensors. Chemical Analysis of Food: Techniques and Applications, (Second Edition), pp. 287–351. DOI:10.1016/B978-0-12-813266-1.00006-1
  15. Flemming, H. C. & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), pp. 623–633. DOI:10.1038/nrmicro2415
  16. Haiko, J. & Westerlund-Wikström, B. (2013). The role of the bacterial flagellum in adhesion and virulence. Biology, 2(4), pp. 1242–1267. DOI:10.3390/biology2041242
  17. Headley, J. V., Gandrass, J., Kuballa, J., Peru, K. M. & Gong, Y. (1998). Rates of Sorption and Partitioning of Contaminants in River Biofilm. Environmental Science & Technology, 32(24), pp. 3968–3973. DOI:10.1021/ES980499L
  18. Hook, A. L., Chang, C. Y., Yang, J., Luckett, J., Cockayne, A., Atkinson, S., Mei, Y., Bayston, R., Irvine, D. J., Langer, R., Anderson, D. G., Williams, P., Davies, M. C. & Alexander, M. R. (2012). Combinatorial discovery of polymers resistant to bacterial attachment. Nature Biotechnology, 30(9), pp. 868–875. DOI:10.1038/nbt.2316
  19. Huston, A. L., Krieger-Brockett, B. B. & Deming, J. W. (2000). Remarkably low temperature optima for extracellular enzyme activity from Arctic bacteria and sea ice. Environmental Microbiology, 2(4), pp. 383–388. DOI:10.1046/j.1462-2920.2000.00118.x
  20. Isobe, A., Uchida, K., Tokai, T. & Iwasaki, S. (2015). East Asian seas: A hot spot of pelagic microplastics. Marine Pollution Bulletin, 101(2), pp. 618–623. DOI:10.1016/J.MARPOLBUL.2015.10.042
  21. Keswani, A., Oliver, D. M., Gutierrez, T. & Quilliam, R. S. (2016). Microbial hitchhikers on marine plastic debris: Human exposure risks at bathing waters and beach environments. Marine Environmental Research, 118, pp. 10–19. DOI:10.1016/J.MARENVRES.2016.04.006
  22. Kiran, B. R., Kopperi, H. & Venkata Mohan, S. (2022). Micro/nano-plastics occurrence, identification, risk analysis and mitigation: challenges and perspectives. Reviews in Environmental Science and Biotechnology, 21(1), pp. 169–203. DOI:10.1007/S11157-021-09609-6/TABLES/3
  23. Klein, S., Dimzon, I.K., Eubeler, J., Knepper, T.P. (2018). Analysis, Occurrence, and Degradation of Microplastics in the Aqueous Environment. [In:] Wagner, M., Lambert, S. (eds) Freshwater Microplastics . The Handbook of Environmental Chemistry, vol 58. Springer, Cham. DOI:10.1007/978-3-319-61615-5_3
  24. Konry, T., Bale, S. S., Bhushan, A., Shen, K., Seker, E., Polyak, B. & Yarmush, M. (2012). Particles and microfluidics merged: Perspectives of highly sensitive diagnostic detection. Microchimica Acta, 176(3–4), pp. 251–269. DOI:10.1007/s00604-011-0705-1
  25. Lange, J. P. (2021). Managing Plastic Waste-Sorting, Recycling, Disposal, and Product Redesign. ACS Sustainable Chemistry and Engineering, 9(47), pp. 15722–15738. DOI:10.1021/ACSSUSCHEMENG.1C05013/ASSET/IMAGES/LARGE/SC1C05013_0001.JPEG
  26. Lee, H. J., Song, N. S., Kim, J. S. & Kim, S. K. (2021). Variation and Uncertainty of Microplastics in Commercial Table Salts: Critical Review and Validation. Journal of Hazardous Materials, 402, 123743. DOI:10.1016/J.JHAZMAT.2020.123743
  27. Lorite, G. S., Rodrigues, C. M., de Souza, A. A., Kranz, C., Mizaikoff, B. & Cotta, M. A. (2011). The role of conditioning film formation and surface chemical changes on Xylella fastidiosa adhesion and biofilm evolution. Journal of Colloid and Interface Science, 359(1), pp. 289–295. DOI:10.1016/J.JCIS.2011.03.066
  28. Lu, X. & Xuan, X. (2015). Inertia-enhanced pinched flow fractionation. Analytical Chemistry, 87(8), pp. 4560–4565. DOI:10.1021/ACS.ANALCHEM.5B00752/ASSET/IMAGES/ MEDIUM/AC-2015-007526_0008.GIF
  29. Luo, S., Zhang, Y., Nguyen, K. T., Feng, S., Shi, Y., Liu, Y., Hutchinson, P., Chierchia, G., Talbot, H., Bourouina, T., Jiang, X. & Liu, A. Q. (2020). Machine Learning-Based Pipeline for High Accuracy Bioparticle Sizing. Micromachines, 11(12), 1084. DOI:10.3390/MI11121084
  30. Mark, D., Haeberle, S., Roth, G., von Stetten, F. & Zengerle, R. (2010). Microfluidic lab-on-a-chip platforms: Requirements, characteristics and applications. Chemical Society Reviews, 39(3), pp. 1153–1182. DOI:10.1039/b820557b
  31. Martin Alexander, (1971). Microbial Ecology. John Willey & Sons Inc.
  32. Mauk, M. G., Chiou, R., Genis, V. & Carr, E. (2013). Image analysis of microfluidics: Visualization of flow at the microscale. ASEE Annual Conference and Exposition, Conference Proceedings. DOI:10.18260/1-2--19693
  33. Mekaru, H. (2020). Effect of Agitation Method on the Nanosized Degradation of Polystyrene Microplastics Dispersed in Water. ACS Omega, 5(7), pp. 3218–3227. DOI:10.1021/ACSOMEGA.9B03278/ASSET/IMAGES/LARGE/AO9B03278_0006.JPEG
  34. Oberbeckmann, S., Löder, M. G. J. & Labrenz, M. (2015). Marine microplastic-associated biofilms – a review. Environmental Chemistry, 12(5), pp. 551–562. DOI:10.1071/EN15069
  35. Osman, A. I., Hosny, M., Eltaweil, A. S., Omar, S., Elgarahy, A. M., Farghali, M., Yap, P. S., Wu, Y. S., Nagandran, S., Batumalaie, K., Gopinath, S. C. B., John, O. D., Sekar, M., Saikia, T., Karunanithi, P., Hatta, M. H. M. & Akinyede, K. A. (2023). Microplastic sources, formation, toxicity and remediation: a review. Environmental Chemistry Letters, 21(4), pp. 2129–2169. DOI:10.1007/S10311-023-01593-3
  36. Pattanayak, P., Singh, S. K., Gulati, M., Vishwas, S., Kapoor, B., Chellappan, D. K., Anand, K., Gupta, G., Jha, N. K., Gupta, P. K., Prasher, P., Dua, K., Dureja, H., Kumar, D. & Kumar, V. (2021). Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives. Microfluidics and Nanofluidics, 25(12), pp. 1–28. DOI:10.1007/S10404-021-02502-2/FIGURES/17
  37. Pauli, N. C., Petermann, J. S., Lott, C. & Weber, M. (2017). Macrofouling communities and the degradation of plastic bags in the sea: An in situ experiment. Royal Society Open Science, 4(10). DOI:10.1098/rsos.170549
  38. Qiu, X., Qi, Z., Ouyang, Z., Liu, P. & Guo, X. (2022). Interactions between microplastics and microorganisms in the environment: Modes of action and influencing factors. Gondwana Research, 108, pp. 102–119. DOI:10.1016/J.GR.2021.07.029
  39. Regnault, C., Dheeman, D. S. & Hochstetter, A. (2018). Microfluidic Devices for Drug Assays. High-Throughput, 7(2), p 18. DOI:10.3390/HT7020018
  40. Ren, K., Zhou, J. & Wu, H. (2013). Materials for microfluidic chip fabrication. Accounts of Chemical Research, 46(11), pp. 2396–2406. DOI:10.1021/ar300314s
  41. Renner, L. D. & Weibel, D. B. (2011). Physicochemical regulation of biofilm formation. MRS Bulletin, 36(5), pp. 347–355. DOI:10.1557/MRS.2011.65
  42. Romera-Castillo, C., Pinto, M., Langer, T. M., Álvarez-Salgado, X. A. & Herndl, G. J. (2018). Dissolved organic carbon leaching from plastics stimulates microbial activity in the ocean. Nature Communications, 9(1), pp. 1–7. DOI:10.1038/s41467-018-03798-5
  43. Rosenberg, M., Bayer, E. A., Delarea, J. & Rosenberg, E. (1982). Role of Thin Fimbriae in Adherence and Growth of Acinetobacter calcoaceticus RAG-1 on Hexadecane. Applied and Environmental Microbiology, 44(4), pp. 929–937. DOI:10.1128/AEM.44.4.929-937.1982
  44. Rummel, C. D., Jahnke, A., Gorokhova, E., Kühnel, D. & Schmitt-Jansen, M. (2017). Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment. Environmental Science and Technology Letters, 4(7), pp. 258–267. DOI:10.1021/ACS.ESTLETT.7B00164/ASSET/IMAGES/LARGE/EZ-2017-00164X_0001.JPEG
  45. Russell, N. J. (1990). Cold adaptation of microorganisms. Philosophical Transactions - Royal Society of London, B, 326(1237), pp. 595–611. DOI:10.1098/rstb.1990.0034
  46. Sauer, K. (2003). The genomics and proteomics of biofilm formation. Genome Biology, 4(6), pp. 1–5. DOI:10.1186/GB-2003-4-6-219/FIGURES/1
  47. Sgier, L., Freimann, R., Zupanic, A. & Kroll, A. (2016). Flow cytometry combined with viSNE for the analysis of microbial biofilms and detection of microplastics. Nature Communications, 7(1), pp. 1–10. DOI:10.1038/ncomms11587
  48. Shrirao, A. B., Fritz, Z., Novik, E. M., Yarmush, G. M., Schloss, R. S., Zahn, J. D. & Yarmush, M. L. (2018). Microfluidic flow cytometry: The role of microfabrication methodologies, performance and functional specification. Technology, 06(01), pp. 1–23. DOI:10.1142/s2339547818300019
  49. Teuten, E. L., Rowland, S. J., Galloway, T. S. & Galloway, T. S. (2007). Potential for Plastics to Transport Hydrophobic Contaminants. ACS Publications, 41(22).
  50. Tokiwa, Y. & Calabia, B. P. (2004). Degradation of microbial polyesters. Biotechnology Letters, 26(15), pp. 1181–1189. DOI:10.1023/B:BILE.0000036599.15302.E5/METRICS
  51. Tu, C., Zhou, Q., Zhang, C., Liu, Y. & Luo, Y. (2020). Biofilms of Microplastics. Handbook of Environmental Chemistry, 95, pp. 299–317. DOI:10.1007/698_2020_461
  52. Vaid, M., Sarma, K. & Gupta, A. (2021). Microplastic pollution in aquatic environments with special emphasis on riverine systems: Current understanding and way forward. Journal of Environmental Management, 293, 112860. DOI:10.1016/J.JENVMAN.2021.112860
  53. Verma, R., Vinoda, K. S., Papireddy, M. & Gowda, A. N. S. (2016). Toxic Pollutants from Plastic Waste- A Review. Procedia Environmental Sciences, 35, pp. 701–708. DOI:10.1016/J.PROENV.2016.07.069
  54. Wang, M. H., He, Y. & Sen, B. (2019). Research and management of plastic pollution in coastal environments of China. Environmental Pollution, 248, pp. 898–905. DOI:10.1016/J.ENVPOL.2019.02.098
  55. Wang, T., Wang, L., Chen, Q., Kalogerakis, N., Ji, R. & Ma, Y. (2020). Interactions between microplastics and organic pollutants: Effects on toxicity, bioaccumulation, degradation, and transport. Science of the Total Environment, 748, 142427. DOI:10.1016/j.scitotenv.2020.142427
  56. Wellner, N. (2013). Fourier transform infrared (FTIR) and Raman microscopy: principles and applications to food microstructures. Food Microstructures: Microscopy, Measurement and Modelling, pp. 163–191. DOI:10.1533/9780857098894.1.163
  57. Wimpenny, J. W. T. (1996). Laboratory growth systems in biofilm research. Cells and Materials, 6(1–3), pp. 221–232.
  58. Wright, S. L. & Kelly, F. J. (2017). Plastic and Human Health: A Micro Issue? Environmental Science and Technology, 51(12), pp. 6634–6647. DOI:10.1021/acs.est.7b00423
  59. Writer, J. H., Ryan, J. N. & Barber, L. B. (2011). Role of biofilms in sorptive removal of steroidal hormones and 4-nonylphenol compounds from streams. Environmental Science and Technology, 45(17), pp. 7275–7283. DOI:10.1021/es2008038
  60. Wu, Y., Xia, L., Yu, Z., Shabbir, S. & Kerr, P. G. (2014). In situ bioremediation of surface waters by periphytons. Bioresource Technology, 151, pp. 367–372. DOI:10.1016/j.biortech.2013.10.088
  61. Yong, C. Q. Y., Valiyaveettil, S. & Tang, B. L. (2020). Toxicity of Microplastics and Nanoplastics in Mammalian Systems. International Journal of Environmental Research and Public Health, 17(5), 1509. DOI:10.3390/IJERPH17051509
  62. Yu, Y., Li, H., Zeng, Y. & Chen, B. (2009). Extracellular enzymes of cold-adapted bacteria from Arctic sea ice, Canada Basin. Polar Biology, 32(10), pp. 1539–1547. DOI:10.1007/s00300-009-0654-x
  63. Zhang, K., Hamidian, A. H., Tubić, A., Zhang, Y., Fang, J. K. H., Wu, C. & Lam, P. K. S. (2021). Understanding plastic degradation and microplastic formation in the environment: A review. Environmental Pollution, 274, 116554. DOI:10.1016/J.ENVPOL.2021.116554
  64. Zhang, Y., Kang, S., Allen, S., Allen, D., Gao, T. & Sillanpää, M. (2020). Atmospheric microplastics: A review on current status and perspectives. Earth-Science Reviews, 203, 103118. DOI:10.1016/j.earscirev.2020.103118
  65. Zhang, Y., Zhang, M. & Fan, Y. (2022). Assessment of microplastics using microfluidic approach. Environmental Geochemistry and Health, 45(3), pp. 1045–1052. DOI:10.1007/S10653-022-01262-4/METRICS
  66. Zhu, K., Jia, H., Zhao, S., Xia, T., Guo, X., Wang, T. & Zhu, L. (2019). Formation of Environmentally Persistent Free Radicals on Microplastics under Light Irradiation. Environmental Science and Technology, 53(14), pp. 8177–8186. DOI:10.1021/ACS.EST.9B01474/SUPPL_FILE/ES9B01474_SI_001.PDF
Go to article

Authors and Affiliations

Mahima Ganguly
1
Jithu Valiamparampil
1
Divyashree Somashekara
2
Lavanya Mulky
1

  1. Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
  2. Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, India
Download PDF Download RIS Download Bibtex

Abstract

The influence of physicochemical parameters of halloysite-carbon composites on the adsorption of skin disinfectants was investigated. The dispersive surface free energy and acid-base properties of halloysite-carbon composites were determined using inverse gas chromatography. The free adsorption energy was higher for all halloysite-carbon composites compared to the unmodified halloysite, which acted as a less electron-donating adsorbent. In contrast, the composite obtained using halloysite nanotubes (HNT) and ground microcrystalline cellulose as the carbon precursor exhibited the highest free adsorption energy and the Kb/Ka ratio. These results suggest that the free adsorption energy can be an additional factor influencing the adsorption process. We demonstrated that the composite with the highest free adsorption energy is effective for removing triclosan, chloroxylenol and chlorophene from water. The acid-base properties of halloysite-carbon composites enhance the adsorption of these compounds due to their acidic character. The composite with the highest Kb/Ka ratio removes adsorbates from aqueous solutions with the greatest efficiency. Parameters such as free dispersion energy, electron-donating, or electron-accepting properties of the adsorbent help explain why these composites exhibit high adsorption capabilities.
Go to article

Bibliography

  1. Barber A.H., Cohen S.R. & Wagner H.D. (2004) Static and dynamic wetting of carbon nanotubes, Physical Review Letters, 92 186103. DOI:10.1103/PhysRevLett.92.186103.
  2. Bilal, M., Barceló, D. & Iqbal, H.M.N. (2020). Persistence, ecological risks, and oxidoreductases-assisted biocatalytic removal of triclosan from the aquatic environment. Sci. Total Environ. 735, 139194. DOI:10.1016/j.scito tenv.2020.139194.
  3. Dorris, G.M. & Gray, D.G. (1980). Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers. J. Colloid Interface Sci. 77, pp. 353-362. DOI:10.1016/0021-9797(80)90304-5
  4. Frydel, L., Słomkiewicz, P. M. & Szczepanik, B. (2023). The adsorption studies of phenol derivatives on halloysite carbon adsorbents by inverse liquid chromatography, Adsorption. 30, pp.185-199. DOI:10.1007/s10450-023-00396-w.
  5. Gholami F., Tomas M., Gholami Z., Mirzaei S. & Vakili M. (2020). Surface Characterization of Carbonaceous Materials Using Inverse Gas Chromatography: A Review, Electrochem, 1, pp. 367–387. DOI:10.3390/electrochem1040024.
  6. Gogoi, A., Mazumder, P., Tyagi, V.K., Chaminda, G.G.T., An, A.K. & Kumar, M. (2018). Occurrence and fate of emerging contaminants in water environment: a review. Groundw. Sustain. Dev. 6, pp. 169– 180. DOI:10 1016/j.gsd.2017.12.009.
  7. Gutmann, V. (1978). The donor-acceptor approach to molecular interactions, Plenum Press, Nowy York.
  8. Mezgebe, M., Jiang, L. H., Shen, Q., Du, C. & Yu, H. R. (2012). Studies and comparison of liquid adsorption behavior and surface properties of single- and multiwall carbon nanotubes by capillary rise method, Colloid and Surfaces A: Physicochemical and Engineering Aspects, 415, pp.86-90. DOI:10.1016/j.colsurfa.2012.09.046.
  9. Nuriel, S., Liu, L., Barber, A.H. & Wagner, H.D. (2005). Direct measurement of multiwall nanotube surface tension, Chemical Physics Letters, 404, pp. 263–266. DOI:10.1016/j.cplett.2005.01.072.
  10. Ocak, H., Sakar, D., Cakar, F., Cankurtaran, O., Eran, B.B. & Karamanet, F. (2008). Use of inverse gas chromatography for the physicochemical characterization of a new synthesised liquid crystal: (S)-5-(2-methylbutoxy)-2-{[(4dodecyloxyphenyl)imino]methyl}phenol, Liquid Crystals, 35(12), pp. 1351-1358. DOI:10.1080/02678290802607691.
  11. Peng, Y., Gardner, D. J., Han, Y., Cai, Z. & Tshabalala, M. A. (2013). Influence of drying method on the surface energy of cellulose nanofibrils determined by inverse gas chromatography, Journal of Colloid and Interface Science, 405, 85. DOI:10.1016/j.jcis.2013.05.033.
  12. Riddle, F.L. & Fowkes, F.M. (1990). Spectral shifts in acid-base chemistry. 1. van der Waals contributions to acceptor numbers, Journal of the American Chemical Society, 112, 3259. DOI:10.1021/ja00165a001.
  13. Schultz, J., Lavielle, L. & Martin, C. (1987). The Role of the Interface in Carbon Fibre-Epoxy Composites. J. Adhes. 23, 45. DOI:10.1080/00218468708080469.
  14. Shi, B., Wang, Y. & Jia, L. (2011). Comparison of Dorris–Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography. Journal of Chromatography A, 1218, pp. 860–862. DOI:10.1016/j.chroma.2010.12.050.
  15. Singh, G. S., Lal, D. & Tripathi, V. S. (2004). Study of microporosity of active carbon spheres using inverse gas chromatographic and static adsorption techniques, Journal of Chromatography A, 1036, pp. 189-195. DOI:10.1016/j.chroma.2004.03.008.
  16. Słomkiewicz, P. M. (2019) Application of inverse gas chromatography in coadsorption studies. Camera Separatoria 2, 71. (in Polish)
  17. Szczepanik, B., Banaś, D., Kubala-Kukuś, A., Szary, K., Słomkiewicz, P. M., Rędzia, N. & Frydel, L. (2020). Surface Properties of Halloysite-Carbon Nanocomposites and Their Application for Adsorption of Paracetamol, Materials, 13, 5647. DOI:10.3390/ma13245647.
  18. Szczepanik, B., Rędzia, N., Frydel, L., Słomkiewicz, P. M., Kołbus, A., Styszko, K., Dziok, T. & Samojeden, B. (2019). Synthesis and Characterization of Halloysite/Carbon Nanocomposites for Enhanced NSAIDs Adsorption from Water, Materials 12, 3754. DOI:10.3390/ma12223754.
  19. Voelkel, A., Strzemiecka, B., Milczewska, K. & Okulus, Z. (2015). Inverse gas chromatographic examination of polymer composites, Open Chemistry 13, 893. DOI:10.1515/chem-2015-0104.
Go to article

Authors and Affiliations

Piotr Słomkiewicz
1
Beata Szczepanik
2
Laura Frydel
3
Maria Włodarczyk-Makuła
4

  1. Jan Kochanowski University Kielce, Poland
  2. Institute of Chemistry, Jan Kochanowski University, Poland
  3. University of Science and Technology Stanisław Staszic in Krakow, Faculty of Energy and Fuels Department of Fuel Technology, Poland
  4. Faculty of Infrastructure and Environment, Częstochowa University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

The employment of green synthesized nanomaterials for water pollution prevention is increasing nowadays. Herein, Mn-doped ZnO nanoparticles were synthesized using Peganum Harmala seed extract and subsequently used for crystal violet (CV) dye removal from aqueous solutions. The first part of the study describes the preparation of the adsorbent (Mn-ZnO NPs) using a simple coprecipitation method. The surface properties of the material were characterized by Fourier transform infrared spectra (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The second part investigates the adsorption of CV dye onto the surface of the prepared Mn-ZnO NPs. Additionally, the isotherm,kinetics, and thermodynamics of the adsorption process were studied in detail. Batch adsorption analysis was carried out by evaluating different parameters, such as the amount of the adsorbent (0.01g to 0.04 g), CV concentration (20 to 80 mg/L), adsorption time (30 to 120 min), and temperature (35 to 65 ⁰C). The maximum CV dye adsorption capacity of the Mn-ZnO NPs was 45.60 mg/g. The thermodynamic study revealed the spontaneous, exothermic, and feasible nature of the adsorption process, primarily driven by physical forces. Kinetic and isotherm analyses indicated that the adsorption of the dye best fit the Freundlich isotherm and pseudo-second-order models, respectively. Mn-doped ZnO is considered an effective adsorbent for CV, benefiting from its rapid and easy preparation, non-toxic nature, and 94 % adsorption efficiency. The material holds potential for future applications in the removal of organic dyes from wastewater.
Go to article

Bibliography

  1. Aboud, A. A., Bukhari, Z. & Al-Ahmadi, A. N. (2023). Enhancement of UV detection properties of ZnO thin films via Ni doping. Physica Scripta, 98(6), 065938. DOI:10.1088/1402-4896/acd284
  2. Aboud, A. A., Shaban, M. & Revaprasadu, N. (2019). Effect of Cu, Ni and Pb doping on the photo-electrochemical activity of ZnO thin films. RSC Advances, 9(14), pp. 7729–7736. DOI:10.1039/C8RA10599E
  3. Ahmadi, S. & Ganjidoust, H. (2021). Using banana peel waste to synthesize BPAC/ZnO nanocomposite for photocatalytic degradation of Acid Blue 25: Influential parameters, mineralization, biodegradability studies. Journal of Environmental Chemical Engineering, 9(5), 106010. DOI:10.1016/J.JECE.2021.106010
  4. Ahmed, S. A. (2017). Structural, optical, and magnetic properties of Mn-doped ZnO samples. Results in Physics, 7, pp. 604–610. DOI:10.1016/j.rinp.2017.01.018
  5. Aigbe, U. O. & Osibote, O. A. (2024). Green synthesis of metal oxide nanoparticles, and their various applications. Journal of Hazardous Materials Advances, 13, 100401. DOI:10.1016/J.HAZADV.2024.100401
  6. Al-Kahlout, A. (2012). ZnO nanoparticles and porous coatings for dye-sensitized solar cell application: Photoelectrochemical characterization. Thin Solid Films, 520(6), pp, 1814–1820. DOI:10.1016/j.tsf.2011.08.095
  7. Alsaiari, R. (2022). Removal of cobalt (II) ions from aqueous solution by Peganum Harmala seeds. Indian Journal of Chemical Technology (Vol. 29).
  8. Alsaiari, R., Alqadri, F., Shedaiwa, I. & Alsaiari, M. (2021). Peganum Harmala plant as an adsorbent for the removal of Copper(II) ions from water. In Indian Journal of Chemical Technology (Vol. 28).
  9. Alsaiari, R., Shedaiwa, I., Al-Qadri, F. A., Musa, E. M., Alqahtani, H., Alkorbi, F., Alsaiari, N. A. & Mohamed, M. M. (2024). Peganum Harmala L. plant as green non-toxic adsorbent for iron removal from water. Archives of Environmental Protection, 50(1), pp. 3–12. DOI:10.24425/aep.2024.149894
  10. Aregawi, B. H. & Mengistie, A. A. (2013). Removal of Ni(II) from aqueous solution using leaf, bark and seed of moringa stenopetala adsorbents. Bulletin of the Chemical Society of Ethiopia, 27(1), pp. 35–47. DOI:10.4314/bcse.v27i1.4
  11. Bououdina, M., Omri, K., El-Hilo, M., El Amiri, A., Lemine, O. M., Alyamani, A., Hlil, E. K., Lassri, H. & El Mir, L. (2014). Structural and magnetic properties of Mn-doped ZnO nanocrystals. Physica E: Low-Dimensional Systems and Nanostructures, 56, pp. 107–112. DOI:10.1016/j.physe.2013.08.024
  12. Castañeda, D., Muñoz H., G. & Caldiño, U. (2005). Local structure determination of Mn2+ in CaCl 2:Mn2+ by optical spectroscopy. Optical Materials, 27(8), pp. 1456–1460. DOI:10.1016/j.optmat.2004.10.009
  13. Chen, L., Cui, Y., Xiong, Z., Zhou, M. & Gao, Y. (2019). Chemical functionalization of the ZnO monolayer: Structural and electronic properties. RSC Advances, 9(38), pp. 21831–21843. DOI:10.1039/c9ra03484f
  14. Darroudi, M., Sabouri, Z., Kazemi Oskuee, R., Khorsand Zak, A., Kargar, H. & Hamid, M. H. N. A. (2013). Sol-gel synthesis, characterization, and neurotoxicity effect of zinc oxide nanoparticles using gum tragacanth. Ceramics International, 39(8), pp. 9195–9199. DOI:10.1016/j.ceramint.2013.05.021
  15. Elsayed, A. E., Osman, D. I., Attia, S. K., Ahmed, H. M., Shoukry, E. M., Mostafa, Y. M. & Taman, A. R. (2020). A study on the removal characteristics of organic and inorganic pollutants from wastewater by low cost biosorbent. Egyptian Journal of Chemistry, 63(4), pp. 1429–1442. DOI:10.21608/ejchem.2019.15710.1950
  16. Fahmy, S. A., Fawzy, I. M., Saleh, B. M., Issa, M. Y., Bakowsky, U. & Azzazy, H. M. E. S. (2021). Green synthesis of platinum and palladium nanoparticles using Peganum harmala L. Seed alkaloids: Biological and computational studies. Nanomaterials, 11(4). DOI:10.3390/nano11040965
  17. Fekri, R., Mirbagheri, S. A., Fataei, E., Ebrahimzadeh-Rajaei, G. & Taghavi, L. (2022). Green synthesis of CuO nanoparticles using Peganum harmala extract for photocatalytic and sonocatalytic degradation of reactive dye and organic compounds. Main Group Chemistry, 21(4), pp. 975–996. DOI:10.3233/MGC-220045
  18. Freundlich, H. M. F. (1906). Over the adsorption in solution. J. Phys. Chem, 57, pp. 385–471.
  19. Ghasemi, M., Ghasemi, N., Zahedi, G., Alwi, S. R. W., Goodarzi, M. & Javadian, H. (2014). Kinetic and equilibrium study of Ni(II) sorption from aqueous solutions onto Peganum harmala-L. International Journal of Environmental Science and Technology, 11(7), pp. 1835–1844. DOI:10.1007/s13762-014-0617-9
  20. Gul, S., Afsar, S., Gul, H. & Ali, B. (2023). Removal of crystal violet dye from wastewater using low-cost biosorbent Trifolium repens stem powder. Journal of the Iranian Chemical Society, 20(11), pp. 2781–2792. DOI:10.1007/s13738-023-02875-x
  21. Homagai, P. L., Poudel, R., Poudel, S. & Bhattarai, A. (2022). Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon, 8(4). DOI:10.1016/j.heliyon.2022.e09261
  22. Jadoun, S., Yáñez, J., Aepuru, R., Sathish, M., Jangid, N. K. & Chinnam, S. (2024). Recent advancements in sustainable synthesis of zinc oxide nanoparticles using various plant extracts for environmental remediation. Environmental Science and Pollution Research, 31(13), pp. 19123–19147. DOI:10.1007/s11356-024-32357-3
  23. Kasbaji, M., Ibrahim, I., Mennani, M., abdelatty abuelalla, O., fekry, S. S., Mohamed, M. M., Salama, T. M., Moneam, I. A., Mbarki, M., Moubarik, A. & Oubenali, M. (2023). Future trends in dye removal by metal oxides and their Nano/Composites: A comprehensive review. Inorganic Chemistry Communications, 158, 111546. DOI:DOI:10.1016/j.inoche.2023.111546
  24. Khan, Z. R., Khan, M. S., Zulfequar, M. & Shahid Khan, M. (2011). Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method. Materials Sciences and Applications, 02(05), pp. 340–345. DOI:10.4236/msa.2011.25044
  25. Kumar, P. & Kirthika, K. (2010). Kinetics and equilibrium studies of Zn2+ ions removal from aqueous solutions by use of natural waste. Electronic Journal of Environmental, Agricultural and Food Chemistry, 9(1), 264.
  26. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), pp. 2221–2295. DOI:10.1021/ja02268a002
  27. Lemecho, B. A., Sabir, F. K., Andoshe, D. M., Gultom, N. S., Kuo, D. H., Chen, X., Mulugeta, E., Desissa, T. D. & Zelekew, O. A. (2022). Biogenic Synthesis of Cu-Doped ZnO Photocatalyst for the Removal of Organic Dye. Bioinorganic Chemistry and Applications. DOI:10.1155/2022/8081494
  28. Liu, Y. X., Liu, Y. C., Shen, D. Z., Zhong, G. Z., Fan, X. W., Kong, X. G., Mu, R. & Henderson, D. O. (2002). Preferred orientation of ZnO nanoparticles formed by post-thermal annealing zinc implanted silica. Solid State Communications, 121(9–10), pp. 531–536. DOI:10.1016/S0038-1098(02)00006-6
  29. Mandal, S. K., Das, A. K., Nath, T. K. & Karmakar, D. (2006). Temperature dependence of solubility limits of transition metals (Co, Mn, Fe, and Ni) in ZnO nanoparticles. Applied Physics Letters, 89(14). DOI:10.1063/1.2360176
  30. Mehar, S., Khoso, S., Qin, W., Anam, I., Iqbal, A. & Iqbal, K. (2019). Green Synthesis of Zincoxide Nanoparticles from Peganum harmala, and its biological potential against bacteria. Frontiers in Nanoscience and Nanotechnology, 6(1). DOI:10.15761/fnn.1000188
  31. Mote, D.V., Dargad, J.S. & Dole, B.N. (2013). Effect of Mn Doping Concentration on Structural, Morphological and Optical Studies of ZnO Nano-particles. Nanoscience and Nanoengineering, 1(2), pp. 116–122. DOI:10.13189/nn.2013.010204
  32. Owoeye, S. S., Toludare, T. S., Isinkaye, O. E. & Kingsley, U. (2019). Influence of waste glasses on the physico-mechanical behavior of porcelain ceramics. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 58(2), pp. 77–84). DOI:10.1016/j.bsecv.2018.07.002
  33. Paksamut, J. & Boonsong, P. (2018). Removal of Copper(II) Ions in Aqueous Solutions Using Tannin-Rich Plants as Natural Bio-Adsorbents. IOP Conference Series: Materials Science and Engineering, 317(1). DOI:10.1088/1757-899X/317/1/012058
  34. Paraguay, F., Estrada, W., Acosta, D. R., Andrade, E. & Miki-Yoshida, M. (1999). Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films, 350, pp. 192–202.
  35. Park, D., Lim, S. R., Yun, Y. S. & Park, J. M. (2008). Development of a new Cr(VI)-biosorbent from agricultural biowaste. Bioresource Technology, 99(18), pp. 8810–8818. DOI:10.1016/J.BIORTECH.2008.04.042
  36. Seetawan, U., Jugsujinda, S., Seetawan, T., Ratchasin, A., Euvananont, C., Junin, C., Thanachayanont, C. & Chainaronk, P. (2011). Effect of Calcinations Temperature on Crystallography and Nanoparticles in ZnO Disk. Materials Sciences and Applications, 02(09), pp. 1302–1306. DOI:10.4236/msa.2011.29176
  37. Shaba, E. Y., Jacob, J. O., Tijani, J. O. & Suleiman, M. A. T. (2021). A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Applied Water Science. 11, 48. DOI:10.1007/s13201-021-01370-z
  38. Sharaf, G. & Hassan, H. (2014). Removal of copper ions from aqueous solution using silica derived from rice straw: Comparison with activated charcoal. International Journal of Environmental Science and Technology, 11(6), pp. 1581–1590. DOI:10.1007/s13762-013-0343-8
  39. Singh, B., Shrivastava, S. B. & Ganesan, V. (2016). Effects of Mn Doping on Zinc Oxide Films Prepared by Spray Pyrolysis Technique. International Journal of Nanoscience, 15(3), 1650024-1–8. DOI:10.1142/S0219581X16500241
  40. Solmaz, A., Turna, T. & Baran, A. (2024). Ecofriendly synthesis of selenium nanoparticles using agricultural Citrus fortunella waste and decolourization of crystal violet from aqueous solution. The Canadian Journal of Chemical Engineering, 102(6), pp. 2051–2067. DOI:10.1002/cjce.25179
  41. Sriram, S., Lalithambika, K.C. & Thayumanavan, A. (2017). Experimental and theoretical investigations of photocatalytic activity of Cu doped ZnO nanoparticles. Optik, 139, pp. 299–308. DOI:10.1016/J.IJLEO.2017.04.013
  42. Taha, A. A., Ahmed, A. M., Abdel Rahman, H. H., Abouzeid, F. M. & Abdel Maksoud, M. O. (2017). Removal of nickel ions by adsorption on nano-bentonite: Equilibrium, kinetics, and thermodynamics. Journal of Dispersion Science and Technology, 38(5), pp. 757–767. DOI:10.1080/01932691.2016.1194211
  43. Theyvaraju, D. & Muthukumaran, S. (2015). Preparation, structural, photoluminescence and magnetic studies of Cu doped ZnO nanoparticles co-doped with Ni by sol–gel method. Physica E: Low-Dimensional Systems and Nanostructures, 74, pp. 93–100. DOI:10.1016/J.PHYSE.2015.06.012
  44. Trari, M., Töpfer, J., Dordor, P., Grenier, J. C., Pouchard, M. & Doumerc, J. P. (2005). Preparation and physical properties of the solid solutions Cu 1+xMn1-xO2 (0≤x≤0.2). Journal of Solid State Chemistry, 178(9), pp. 2751–2758. DOI:10.1016/j.jssc.2005.06.009
  45. Ullah, I., Rauf, A., Khalil, A. A., Luqman, M., Islam, M. R., Hemeg, H. A., Ahmad, Z., Al-Awthan, Y. S., Bahattab, O. & Quradha, M. M. (2024). Peganum harmala L. extract-based Gold (Au) and Silver (Ag) nanoparticles (NPs): Green synthesis, characterization, and assessment of antibacterial and antifungal properties. Food Science and Nutrition. 12(6), pp.4459-4472. DOI:10.1002/fsn3.4112
  46. Yang, Z., Ye, Z., Xu, Z. & Zhao, B. (2009). Effect of the morphology on the optical properties of ZnO nanostructures. Physica E: Low-Dimensional Systems and Nanostructures, 42(2), pp. 116–119. DOI:10.1016/j.physe.2009.09.010
  47. Yildirimcan, S., Ocakoglu, K., Erat, S., Emen, F. M., Repp, S. & Erdem, E. (2016). The effect of growing time and Mn concentration on the defect structure of ZnO nanocrystals: X-ray diffraction, infrared and EPR spectroscopy. RSC Advances, 6(45), pp. 39511–39521. DOI:10.1039/c6ra04071c
  48. Zafar, M. N., Dar, Q., Nawaz, F., Zafar, M. N., Iqbal, M. & Nazar, M. F. (2019). Effective adsorptive removal of azo dyes over spherical ZnO nanoparticles. Journal of Materials Research and Technology, 8(1), pp. 713–725. DOI:10.1016/j.jmrt.2018.06.002
  49. Zhu, Z., Zhao, S. & Wang, C. (2022). Antibacterial, Antifungal, Antiviral, and Antiparasitic Activities of Peganum harmala and Its Ingredients: A Review. MDPI Molecules, 27(13). DOI:10.3390/molecules27134161
Go to article

Authors and Affiliations

Faeza Alkorbi
1
ORCID: ORCID
Fatima A. Al-Qadri
2
ORCID: ORCID

  1. Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah 68342, Saudi Arabia
  2. Department of Chemistry, Faculty of Science, Sana'a University, Sana'a, Yemen
Download PDF Download RIS Download Bibtex

Abstract

The objective of this study is to enhance the photocatalytic capabilities of kaolin clay to improve its efficiency in environmental remediation. Various techniques were employed to modify kaolin clay, including heat treatment, acid modification, and material integration. These methods aimed to reduce its bandgap and improve its selective adsorption properties, thereby enabling better visible light activation and pollutant removal. The study discovered that modified kaolin-derived nanomaterials exhibit remarkable potential in breaking down pollutants, disinfecting, capturing heavy metals, and eliminating airborne contaminants. These advanced materials have been successfully used in water filtration, air purification, and the development of self-cleaning surfaces.The modifications increased surface area, adsorption capacity, and overall catalytic performance. Unmodified kaolin, with its broad bandgap, has limitations that hinder its ability to be driven by visible light for photocatalytic purposes and to selectively absorb specific pollutants, including heavy metals. The novelty of this research lies in the systematic exploration and optimization of diverse modification strategies for kaolin clay, showcasing its versatility in photocatalytic applications. The tailored modifications of kaolin to address specific environmental needs have the potential to be a cost-effective and eco-friendly solution for sustainable environmental restoration.
Go to article

Bibliography

  1. Abdo, S. M., El-Hout, S. I., Shawky, A., Rashed, M. N. & El-Sheikh, S. M. (2022). Visible-light-driven photodegradation of organic pollutants by simply exfoliated kaolinite nanolayers with enhanced activity and recyclability. Environmental Research, 214, 113960. DOI:10.1016/j.envres.2022.113960
  2. Abou Alsoaud, M. M., Taher, M. A., Hamed, A. M., Elnouby, M. S. & Omer, A. M. (2022). Reusable kaolin impregnated aminated chitosan composite beads for efficient removal of Congo red dye: Isotherms, kinetics and thermodynamics studies. Scientific Reports, 12(1), 12972. DOI:10.1038/s41598-022-17305-w
  3. Akpotu, S. O., Lawal, I. A., Diagboya, P. N., Mtunzi, F. M. & Ofomaja, A. E. (2022). Engineered geomedia kaolin clay-reduced graphene oxide–polymer composite for the remediation of olaquindox from water. ACS omega, 7(38), pp. 34054-34065. DOI:10.1021/acsomega.2c03253
  4. Al-Qadri, F. A. & Alsaiari, R. (2023). Silica ash from waste palm fronds used as an eco-friendly, sustainable adsorbent for the Removal of cupper (II). Archives of Environmental Protection, 49(2). https://DOI 10.24425/aep.2023.145894
  5. Al-Rudainy, A. J., Mustafa, S., Ashor, A. & Bader, M. (2023). Role of Kaolin on Hemtological, Biochemical and Survival Rate of Cyprinus Carpio Challenged with Pesuydomonas Aeruginosa. Iraqi Journal of Agricultural Sciences, 54(2), pp. 472-477. DOI:10.36103/ijas.v54i2.1723
  6. Alkhabbas, M., Odeh, F., Alzughoul, K., Afaneh, R. & Alahmad, W. (2023). Jordanian Kaolinite with TiO2 for Improving Solar Light Harvesting Used in Dye Removal. Molecules, 28(3), 989. DOI:10.3390/molecules28030989
  7. Aritonang, A. B., Selpiana, H., Wibowo, M. A. & Adhitiawarman, A. (2022). Photocatalytic Degradation of Methylene Blue using Fe2O3-TiO2/Kaolinite under Visible Light Illumination. JKPK (Jurnal Kimia dan Pendidikan Kimia), 7(3), pp. 277-286. DOI:10.20961/jkpk.v7i3.66567
  8. Asmare, Z. G., Aragaw, B. A., Atlabachew, M. & Wubieneh, T. A. (2022). Kaolin-Supported Silver Nanoparticles as an Effective Catalyst for the Removal of Methylene Blue Dye from Aqueous Solutions. ACS omega, 8(1), pp. 480-491. DOI:10.1021/acsomega.2c05265
  9. Ayalew, A. A. (2020). Development of kaolin clay as a cost-effective technology for defluoridation of groundwater. International Journal of Chemical Engineering, 1-10. DOI:10.1155/2020/8820727
  10. Ayalew, A. A. (2023). Physiochemical Characterization of Ethiopian Mined Kaolin Clay through Beneficiation Process. Advances in Materials Science and Engineering, DOI:10.1155/2023/9104807
  11. Bahniuk, M. S., Alidina, F., Tan, X. & Unsworth, L. D. (2022). The last 25 years of research on bioflocculants for kaolin flocculation with recent trends and technical challenges for the future. Frontiers in Bioengineering and Biotechnology, 10, 1048755. DOI:10.3389/fbioe.2022.1048755
  12. Belachew, N. & Hinsene, H. (2020). Preparation of cationic surfactant-modified kaolin for enhanced adsorption of hexavalent chromium from aqueous solution. Applied Water Science, 10(1), pp. 1-8. DOI:10.1007/s13201-019-1121-7
  13. Belmokhtar, N., Ammari, M. & Brigui, J. (2017). Comparison of the microstructure and the compressive strength of two geopolymers derived from Metakaolin and an industrial sludge. Construction and Building Materials, 146, pp. 621-629. DOI:10.1016/j.conbuildmat.2017.04.127
  14. Bhatti, Q. A., Baloch, M. K., Schwarz, S. & Ishaq, M. (2023). Impact of mechanochemical treatment on surface chemistry and flocculation of kaolinite dispersion. Asia‐Pacific Journal of Chemical Engineering, 18(3), e2886. DOI:10.1002/apj.2886
  15. Bondarieva, A., Yaichenia, I., Zahorodniuk, N., Tobilko, V. & Pavlenko, V. (2022). Water purification from cationic organic dyes using kaolin-based ceramic materials. Technology audit and production reserves, 2(3/64), pp. 10-16. https://doi:10.15587/2706-5448.2022.254584.
  16. Bousbih, S., Errais, E., Darragi, F., Duplay, J., Trabelsi-Ayadi, M., Daramola, M. O. & Ben Amar, R. (2021). Treatment of textile wastewater using monolayered ultrafiltation ceramic membrane fabricated from natural kaolin clay. Environmental Technology, 42(21), pp. 3348-3359. DOI:10.1080/09593330.2020.1729242
  17. Burns, G. (1985). Solid State Physics Academic Press Inc. New York.
  18. Chen, M., Yang, T., Han, J., Zhang, Y., Zhao, L., Zhao, J., Li, R., Huang, Y., Gu, Z. & Wu, J. (2023). The application of mineral kaolinite for environment decontamination: A review. Catalysts, 13(1), 123. DOI:10.3390/catal13010123
  19. Chuaicham, C., Trakulmututa, J., Shu, K., Shenoy, S., Srikhaow, A., Zhang, L., Mohan, S., Sekar, K. & Sasaki, K. (2023). Recent clay-based photocatalysts for wastewater treatment. Separations, 10(2), 77. DOI:10.3390/separations10020077
  20. Ding, S. L., Zhang, L. L., Xu, B. H. & Liu, Q. F. (2012). Review and prospect of surface modification of kaolin. Advanced Materials Research, 430, pp. 1382-1385. DOI:10.4028/www.scientific.net/AMR.430-432.1382
  21. El-Sheikh, S., Shawky, A., Abdo, S. M., Rashed, M. N. & El-Dosoqy, T. I. (2020). Preparation and characterisation of nanokaolinite photocatalyst for removal of P-nitrophenol under UV irradiation. International Journal of Nanomanufacturing, 16(3), pp. 232-242. DOI:10.1504/IJNM.2020.108042
  22. El-Sherbiny, S., Morsy, F. A., Hassan, M. S. & Mohamed, H. F. (2015). Enhancing Egyptian kaolinite via calcination and dealumination for application in paper coating. Journal of Coatings Technology and Research, 12, pp. 739-749. DOI:10.1007/s11998-015-9672-5
  23. Erasto, L., Hellar-Kihampa, H., Mgani, Q. A. & Lugwisha, E. H. J. (2023). Comparative analysis of cationic dye adsorption efficiency of thermally and chemically treated Tanzanian kaolin. Environmental Earth Sciences, 82(4), 101. DOI:10.1007/s12665-023-10782-w
  24. Eze, K., Nwadiogbu, J., Nwankwere, E., Appl, A. & Res, S. (2012). Effect of acid treatments on the physicochemical properties of kaolin clay. Archives of Applied Science Research, 4(2), pp. 792-794.
  25. Fourdrin, C., Balan, E., Allard, T., Boukari, C. & Calas, G. (2009). Induced modifications of kaolinite under ionizing radiation: an infrared spectroscopic study. Physics and Chemistry of Minerals, 36, pp. 291-299. DOI:10.1007/s00269-008-0277-8
  26. Gad, A., Al-Mur, B. A., Alsiary, W. A. & Abd El Bakey, S. M. (2022). Optimization of carboniferous Egyptian kaolin treatment for pharmaceutical applications. Sustainability, 14(4), 2388. DOI:10.3390/su14042388
  27. Goodarzi, N., Ashrafi-Peyman, Z., Khani, E. & Moshfegh, A. Z. (2023). Recent progress on semiconductor heterogeneous photocatalysts in clean energy production and environmental remediation. Catalysts, 13(7), 1102. DOI:10.3390/catal13071102
  28. Hoai, P. T. T., Huong, N. T. M., Huong, P. T. & Viet, N. M. (2022). Improved the light adsorption and separation of charge carriers to boost photocatalytic conversion of CO2 by using silver doped ZnO photocatalyst. Catalysts, 12(10), 1194. DOI:10.3390/catal12101194
  29. Hu, P., Zhang, Y. & Cheng, G. (2023). Molecular Catalysis, 547, 113312. DOI:10.1016/j.mcat.2023.113312
  30. Huang, Z., Li, L., Li, Z., Li, H. & Wu, J. (2020). Synthesis of novel kaolin-supported g-C3N4/CeO2 composites with enhanced photocatalytic removal of ciprofloxacin. Materials, 13(17), 3811. DOI:10.3390/ma13173811
  31. Jiang, D., Liu, Z., Fu, L., Jing, H. & Yang, H. (2018). Efficient nanoclay-based composite photocatalyst: the role of nanoclay in photogenerated charge separation. The Journal of Physical Chemistry C, 122(45), pp. 25900-25908. DOI:10.1021/acs.jpcc.8b08663
  32. Kamaluddin, M. R., Zamri, N. I. I., Kusrini, E., Prihandini, W. W., Mahadi, A. H. & Usman, A. (2021). Photocatalytic activity of kaolin–titania composites to degrade methylene blue under UV light irradiation; kinetics, mechanism and thermodynamics. Reaction Kinetics, Mechanisms and Catalysis, 133(1), pp. 517-529. DOI:10.1007/s11144-021-01986-x
  33. Kareem, R. A., Alqadoori, M. A. I. & Ismail, M. M. (2022). Enhancement mechanical, thermal and dielectrical characteristics of polystyrene reinforcement by glass fiber and additive kaolin. Materials Science Forum, 1077, pp. 79-86. DOI:10.4028/p-qiok7y
  34. Kuranga, I., Alafara, A., Halimah, F., Fausat, A., Mercy, O. & Tripathy, B. (2018). Production and characterization of water treatment coagulant from locally sourced kaolin clays. Journal of Applied Sciences and Environmental Management, 22(1), pp. 103-109. DOI:10.4314/jasem.v22i1.19
  35. Kutláková, K. M., Tokarský, J. & Peikertová, P. (2015). Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity. Applied Catalysis B: Environmental, 162, pp. 392-400. DOI:10.1016/j.apcatb.2014.07.018
  36. Li, C., Sun, Z., Song, A., Dong, X., Zheng, S. & Dionysiou, D. D. (2018). Flowing nitrogen atmosphere induced rich oxygen vacancies overspread the surface of TiO2/kaolinite composite for enhanced photocatalytic activity within broad radiation spectrum. Applied Catalysis B: Environmental, 236, pp. 76-87. DOI:10.1016/j.apcatb.2018.04.083
  37. Li, C., Zhu, N., Dong, X., Zhang, X., Chen, T., Zheng, S. & Sun, Z. (2020). Tuning and controlling photocatalytic performance of TiO2/kaolinite composite towards ciprofloxacin: Role of 0D/2D structural assembly. Advanced Powder Technology, 31(3), pp. 1241-1252. DOI:10.1016/j.apt.2020.01.007
  38. Liang, X., Li, Q. & Fang, Y. (2023). Preparation and characterization of modified kaolin by a mechanochemical method. Materials, 16(8), 3099. DOI:10.3390/ma16083099
  39. Lin, M., Chen, H., Zhang, Z. & Wang, X. (2023). Engineering interface structures for heterojunction photocatalysts. Physical Chemistry Chemical Physics, 25(6), pp. 4388-4407. DOI:10.1039/D2CP05281D
  40. Lindberg, J. D. & Snyder, D. G. (1972). Diffuse reflectance spectra of several clay minerals. American Mineralogist: Journal of Earth and Planetary Materials, 57(3-4_Part_1), pp. 485-493.
  41. Liu, J., Dong, G., Jing, J., Zhang, S., Huang, Y. & Ho, W. (2021). Photocatalytic reactive oxygen species generation activity of TiO2 improved by the modification of persistent free radicals. Environmental Science: Nano, 8(12), pp. 3846-3854. DOI:10.1039/D1EN00832C
  42. Liu, Q., Wang, S., Han, F., Lv, S., Yan, Z., Xi, Y. & Ouyang, J. (2022). Biomimetic tremelliform ultrathin MnO2/CuO nanosheets on kaolinite driving superior catalytic oxidation: an example of CO. ACS Applied Materials & Interfaces, 14(39), pp. 44345-44357. DOI:10.1021/acsami.2c11640
  43. Ma, R., Zhao, S., Jiang, X., Qi, Y., Zhao, T., Liu, Z., Han, C. & Shen, Y. (2023). Modification and regulation of acid-activated kaolinite with TiO2 nanoparticles and their enhanced photocatalytic activity to sodium ethyl xanthate. Environmental Technology Reviews, 12(1), pp. 272-285. DOI:10.1080/21622515.2023.2202827
  44. Mamulová Kutláková, K., Tokarský, J. & Peikertová, P. (2015). Functional and eco-friendly nanocomposite kaolinite/ZnO with high photocatalytic activity. Applied Catalysis B: Environmental, 162, pp. 392-400. DOI:DOI:10.1016/j.apcatb.2014.07.018
  45. Mei, X., Li, S., Chen, Y., Huang, X., Cao, Y., Guro, V. P. & Li, Y. (2023). Silica–chitosan composite aerogels for thermal insulation and adsorption. Crystals, 13(5), 755. DOI:10.3390/cryst13050755
  46. Mohd Yunus, N. Z., Ayub, A., Wahid, M. A., Mohd Satar, M. K. I., Abudllah, R. A., Yaacob, H., Hassan, S. A. & Hezmi, M. A. (2019). Strength behaviour of kaolin treated by demolished concrete materials. IOP Conference Series: Earth and Environmental Science, 220, 012001. DOI 10.1088/1755-1315/220/1/012001
  47. Omary, P. M., Ricky, E. X., Kasimu, N. A., Madirisha, M. M., Kilulya, K. F. & Lugwisha, E. H. (2023). Potential of Kaolin Clay on Formulation of Water Based Drilling Mud Reinforced with Biopolymer, Surfactant, and Limestone. Tanzania Journal of Science, 49(1), pp. 218-229. https://DOI:10.4314/tjs.v49i1.19
  48. Panda, T., Roy, N., Dutta, S. & Maity, T. (2023). Implementations of Photocatalysis: A Futuristic Approach. International Journal of Chemical and Environmental Sciences, 4(3), pp. 48-61. DOI:10.15864/ijcaes.4305
  49. Rajan, M. S., Yoon, M. & Thomas, J. (2022). Kaolin-graphene carboxyl incorporated TiO2 as efficient visible light active photocatalyst for the degradation of cefuroxime sodium. Photochemical & Photobiological Sciences, 21(4), pp. 509-528. DOI:10.1007/s43630-022-00179-2
  50. Rekik, S. B., Gassara, S., Bouaziz, J., Baklouti, S. & Deratani, A. (2023). Performance Enhancement of Kaolin/Chitosan Composite-Based Membranes by Cross-Linking with Sodium Tripolyphosphate: Preparation and Characterization. Membranes, 13(2), 229. DOI:10.3390/membranes13020229
  51. Román, C., Jeon, H., Zhu, H. & Ozkan, E. (2023). Evaluating Kaolin Clay as a Potential Substance for ISO Sprayer Cleaning System Tests. Applied Engineering in Agriculture, 39(3), pp. 347-358. https://doi: 10.13031/aea.15466
  52. Romolini, G., Gambucci, M., Ricciarelli, D., Tarpani, L., Zampini, G. & Latterini, L. (2021). Photocatalytic activity of silica and silica-silver nanocolloids based on photo-induced formation of reactive oxygen species. Photochemical & Photobiological Sciences, 20(9), pp. 1161-1172. DOI:10.1007/s43630-021-00089-9
  53. Roques-Carmes, T., Alem, H., Hamieh, T., Toufaily, J., Frochot, C. & Villiéras, F. (2020). 3 - Different strategies of surface modification to improve the photocatalysis properties: pollutant adsorption, visible activation, and catalyst recovery. [In] C. Mustansar Hussain & A. K. Mishra (Eds.), Handbook of Smart Photocatalytic Materials (pp. 39-57). Elsevier. DOI:10.1016/B978-0-12-819049-4.00007-6
  54. San Nicolas, R., Cyr, M. & Escadeillas, G. (2013). Characteristics and applications of flash metakaolins. Applied Clay Science, 83, pp. 253-262. DOI:10.1016/j.clay.2013.08.036
  55. Sbeih, S. A. & Zihlif, A. M. (2009). Optical and electrical properties of kaolinite/polystyrene composite. Journal of Physics D: Applied Physics, 42(14), 145405. https://DOI 10.1088/0022-3727/42/14/145405
  56. Serna-Galvis, E. A., Martínez-Mena, Y. L., Arboleda-Echavarría, J., Hoyos-Ayala, D. A., Echavarría-Isaza, A. & Torres-Palma, R. A. (2023). Zeolite 4A activates peroxymonosulfate toward the production of singlet oxygen for the selective degradation of organic pollutants. Chemical Engineering Research and Design, 193, pp. 121-131. DOI:10.1016/j.cherd.2023.03.015
  57. Shirzad-Siboni, M., Farrokhi, M., Darvishi Cheshmeh Soltani, R., Khataee, A. & Tajassosi, S. (2014). Photocatalytic Reduction of Hexavalent Chromium over ZnO Nanorods Immobilized on Kaolin. Industrial & Engineering Chemistry Research, 53(3), pp. 1079-1087. DOI:10.1021/ie4032583
  58. Sitarz-Palczak, E., Kalembkiewicz, J. & Galas, D. (2019). Comparative study on the characteristics of coal fly ash and biomass ash geopolymers. Archives of Environmental Protection, 45(1), pp. 126-135. DOI 10.24425/aep.2019.126427
  59. Sofi’i, Y. K., Sudarman, S. & Suprianto, H. (2022). Application of molecular dynamic energy of kaolin clay as photocatalysts. AIP Conference Proceedings, 2453(1), 020014. DOI:10.1063/5.0094250
  60. Sun, Z., Li, C., Du, X., Zheng, S. & Wang, G. (2018). Facile synthesis of two clay minerals supported graphitic carbon nitride composites as highly efficient visible-light-driven photocatalysts. Journal of colloid and interface science, 511, pp. 268-276. DOI:10.1016/j.jcis.2017.10.005
  61. Sun, Z., Yuan, F., Li, X., Li, C., Xu, J. & Wang, B. (2018). Fabrication of novel cyanuric acid modified g-C3N4/kaolinite composite with enhanced visible light-driven photocatalytic activity. Minerals, 8(10), 437. DOI:10.3390/min8100437
  62. Taheri, B. (2023). Iron removal from kaolin by oxalic acid using a novel pre-agitating and high-pressure washing technique. Clay Minerals, 58(2), pp. 224-233. DOI:10.1180/clm.2023.11
  63. Tanwongwan, W., Wongkitikun, T., Onpecht, K., Srilai, S., Assabumrungrat, S., Chollacoop, N. & Eiad-ua, A. (2020). Structure development of Thailand’s kaolin by mechanochemical technique. AIP Conference Proceedings, 2279(1), 060001. DOI:10.1063/5.0025045
  64. Tharakeswari, S., Saravanan, D., Agrawal, A. K. & Jassal, M. (2022). Kaolin-Calcium Carbonate-Titanium Dioxide (KCT) Composites for Decolourisation of Reactive Dye Effluent. Journal of the Chemical Society of Pakistan, 44(6). DOI:10.52568/001188/jcsp/44.06.2022
  65. Ugwuja, C. G., Adelowo, O. O., Ogunlaja, A., Omorogie, M. O., Olukanni, O. D., Ikhimiukor, O. O., Iermak, I., Kolawole, G. A., Guenter, C. & Taubert, A. (2019). Visible-light- mediated photodynamic water disinfection@ bimetallic-doped hybrid clay nanocomposites. ACS Applied Materials & Interfaces, 11(28), pp. 25483-25494. DOI:10.1021/acsami.9b01212
  66. Usman, J., Hafiz, M., Othman, D., Ismail, A., Rahman, M., Jaafar, J. & Abdullahi, T. (2020). Comparative study of Malaysian and Nigerian kaolin-based ceramic hollow fiber membranes for filtration application. Malaysian J Anal Sci, 16(2), pp. 78-82. DOI:10.11113/mjfas.v16n2.1484
  67. Vagvolgyi, V., Zsirka, B., Győrfi, K., Horváth, E. & Kristóf, J. (2021). Different Methods for Preparation of Active Sites in Kaolinite Surface and their Usability in Photocatalytic Processes, [in] Proceedings of the 2nd International Electronic Conference on Mineral Science, 1–15 March 2021, MDPI: Basel, Switzerland, DOI:10.3390/iecms2021-09357
  68. Varajāo, A. F. D. C., Gilkes, R. J. & Hart, R. D. (2001). The relationships between kaolinite crystal properties and the origin of materials for a Brazilian kaolin deposit. Clays and Clay Minerals, 49(1), pp. 44-59. DOI:10.1346/CCMN.2001.0490104
  69. Wang, L. & Yu, J. (2023). Principles of photocatalysis. In Interface science and technology (Vol. 35, pp. 1-52). Elsevier. DOI:10.1016/B978-0-443-18786-5.00002-0
  70. Wang, T., Xu, L., Cui, J., Wu, J., Li, Z., Wu, Y., Tian, B. & Tian, Y. (2022). Enhanced Charge Separation for Efficient Photocatalytic H2 Production by Long-Lived Trap-State-Induced Interfacial Charge Transfer. Nano Letters, 22(16), 6664-6670. DOI:10.1021/acs.nanolett.2c02005 Burns, G. (1985). Solid State Physics Academic Press Inc. New York.
  71. Xiao, Y., Tian, X., Chen, Y., Xiao, X., Chen, T. & Wang, Y. (2023). Recent Advances in Carbon Nitride-Based S-scheme Photocatalysts for Solar Energy Conversion. Materials, 16(10), 3745. DOI:10.3390/ma16103745
  72. Xu, H., Sun, S., Jiang, S., Wang, H., Zhang, R. & Liu, Q. (2018). Effect of pretreatment on microstructure and photocatalytic activity of kaolinite/TiO 2 composite. Journal of sol-gel science and technology, 87, pp. 676-684. DOI:10.1007/s10971-018-4760-5
  73. Yahaya, S., Jikan, S. S., Badarulzaman, N. A. & Adamu, A. D. (2017). Chemical composition and particle size analysis of kaolin. Traektoriâ Nauki, Volume 3, Number 10, 2017, pp. 1001-1004(4) DOI:10.22178/pos.27-1
  74. Yu, J. M. & Jang, J.-W. (2023). Organic Semiconductor-Based Photoelectrochemical Cells for Efficient Solar-to-Chemical Conversion. Catalysts, 13(5), 814. DOI:10.3390/catal13050814
  75. Zakaria Djibrine, B., Zheng, H., Wang, M., Liu, S., Tang, X., Khan, S., Jimenéz, A. N. & Feng, L. (2018). An effective flocculation method to the kaolin wastewater treatment by a cationic polyacrylamide (CPAM): Preparation, characterization, and flocculation performance. International Journal of Polymer Science, pp. 1-12. DOI:10.1155/2018/5294251
  76. Zhang, B., Wang, D., Cao, J., Zhao, C., Pan, J., Liu, D., Liu, S., Zeng, Z., Chen, T. & Liu, G. (2023). Efficient doping induced by charge transfer at the hetero-interface to enhance photocatalytic performance. ACS Applied Materials & Interfaces, 15(10), pp. 12924-12935. DOI:10.1021/acsami.2c19209
  77. Zhang, C., Xie, C., Gao, Y., Tao, X., Ding, C., Fan, F. & Jiang, H. L. (2022). Charge separation by creating band bending in metal–organic frameworks for improved photocatalytic hydrogen evolution. Angewandte Chemie, 134(28), e202204108. DOI:10.1002/ange.202204108
  78. Zhang, Q., Shan, A., Wang, D., Jian, L., Cheng, L., Ma, H. & Li, J. (2013). A new acidic Ti sol impregnated kaolin photocatalyst: synthesis, characterization and visible light photocatalytic performance. Journal of sol-gel science and technology, 65, pp. 204-211. DOI:10.1007/s10971-012-2925-1
  79. Zhang, Y., Gan, H. & Zhang, G. (2011). A novel mixed-phase TiO2/kaolinite composites and their photocatalytic activity for degradation of organic contaminants. Chemical Engineering Journal, 172(2-3), pp. 936-943. DOI:10.1016/j.cej.2011.07.005
  80. Zvyagin, B. & Drits, V. (1996). Interrelated features of structure and stacking of kaolin mineral layers. Clays and Clay Minerals, 44, pp. 297-303. DOI: 10.1346/CCMN.1996.0440301
Go to article

Authors and Affiliations

Samor Boonphan
1
Suriyong Prachakiew
1
Khuruwan Klinbumrung
2
Chananbhorn Thongrote
2
Arrak Klinbumrung
3 4

  1. Faculty of Science and Agricultural Technology, Rajamangala University of Technology Lanna, Chiang Rai, Thailand
  2. Scientific Instrument and Product Standard Quality Inspection Center, University of Phayao, Phayao, Thailand
  3. Unit of Excellence on Advanced Nanomaterials, University of Phayao, Phayao, Thailand
  4. School of Science, University of Phayao, Phayao, Thailand
Download PDF Download RIS Download Bibtex

Abstract

Mishandling and disposal of post-harvested phytoremediation biomass results in secondary pollution. Biochar production is one of the available technologies for processing post-harvested phytoremediation biomasses. The main objective of this study was to assess the potential adsorption of PO43- and NO3- ions from a binary solution by ZnCl2-activated phytoremediation biochars. The biochars were activated using ZnCl2 and analyzed for specific surface area, pore size, volume, surface morphology, point of zero charges (pHpzc), surface functional groups, and elemental composition. Subsequently, the adsorption potential for PO43- and NO3- ions of the activated biochar was investigated. Activation of phytoremediation biochars led to the development of new micropores and increased specific surface area range from 1.62-4.72 m2 g-1 to 4.75- 55.50 m2 g-1. ZnCl2 activation reduced the pHpzc values of Cymbopogon citratus, Cymbopogon nardus, and Chrysopogon zizanioides biochars (BCL2, BCC2, and BCV2) from 9.75, 9.50, 9.62 to 5.72, 5.51, and 6.23, respectively. Activated Chrysopogon zizanioides biochar (ACBCV2), activated Cymbopogon nardus biochar (ACBCC2) and activated Cymbopogon citratus biochar (ACBCL2) showed maximum potential phosphate ion adsorption capacities of 115.70, 101.74, and 270.59 mg g-1, respectively. ACBCL2, ACBCC2, and ACBCV2 indicated maximum potential nitrate ion adsorption capacities of 155.78, 99.42, and 117.71 mg g-1. BCC2, BCL2, ACBCV1, ACBCV2, and ACBCC2 best fitted the Langmuir linear form 1 model during NO3- adsorption. The results obtained in this study showed that ZnCl2-activated phytoremediation biochars have the potential to remove PO4 3- and NO3- ions from PO4 3- and NO3- ions binary solution.
Go to article

Bibliography

Abd Rahman, A. A., Alias, A. B., Jaffar, N. N. & Amir, M. A. (2019). Adsorption of hydrogen sulphide by commercialized rice husk biochar (RHB) & hydrogel biochar composite (RH-HBC). Int. J. Recent Technol. Eng, 8(4), pp. 6864-6870. DOI:10.35940/ijrte.D5207.118419. Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W. & Chen, M. (2016). Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresource technology, 214, pp. 836-851. DOI:10.1016/j.biortech.2016.05.057. Alagha, O., Manzar, M. S., Zubair, M., Anil, I., Mu’azu, N. D. & Qureshi, A. (2020). Comparative adsorptive removal of phosphate and nitrate from wastewater using biochar-MgAl LDH nanocomposites: coexisting anions effect and mechanistic studies. Nanomaterials, 10(2), 336. DOI:10.3390/nano10020336. Angın, D., Altintig, E. & Köse, T. E. (2013). Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation. Bioresource Technology, 148, pp. 542-549. DOI: 10.1016/j.biortech.2013.08.164. Banu, H. A. T., Karthikeyan, P., Vigneshwaran, S. & Meenakshi, S. (2020). Adsorptive performance of lanthanum encapsulated biopolymer chitosan-kaolin clay hybrid composite for the recovery of nitrate and phosphate from water. International journal of biological macromolecules, 154, pp. 188-197. DOI: 10.1016/j.ijbiomac.2020.03.074. Barquilha, C. E. & Braga, M. C. (2021). Adsorption of organic and inorganic pollutants onto biochars: Challenges, operating conditions, and mechanisms. Bioresource Technology Reports, 15, 100728. DOI:10.1016/j.biteb.2021.100728. Berkessa, Y. W., Mereta, S. T. & Feyisa, F. F. (2019). Simultaneous removal of nitrate and phosphate from wastewater using solid waste from the factory. Applied Water Science, 9, pp. 1-10. DOI:10.1007/s13201-019-0906-z. Biswas, B., Rahman, T., Sakhakarmy, M., Jahromi, H., Eisa, M., Baltrusaitis, J. & Adhikari, S. (2023). Phosphorus adsorption using chemical and metal chloride activated biochars: Isotherms, kinetics and mechanism study. Heliyon, 9(9). DOI:10.1016/j.heliyon.2023.e19830. Borchard, N., Wolf, A., Laabs, V., Aeckersberg, R., Scherer, H. W., Moeller, A. & Amelung, W. (2012). Physical activation of biochar and its meaning for soil fertility and nutrient leaching–a greenhouse experiment. Soil Use and Management, 28(2), pp. 177-184. DOI:10.1111/j.1475-2743.2012.00407.x Bouchemal, N., Belhachemi, M., Merzougui, Z. and Addoun, F. (2009). The effect of temperature and impregnation ratio on the active carbon porosity. Desalination and water treatment, 10(1-3), pp.115-120. DOI:10.5004/dwt.2009.828. Boyd, C. E. (2019). Water quality: an introduction. Springer Nature. DOI 10.1007/978-3-319-17446-4. Buentello-Montoya, D., Zhang, X., Li, J., Ranade, V., Marques, S. & Geron, M. (2020). Performance of biochar as a catalyst for tar steam reforming: Effect of the porous structure. Applied energy, 259, 114176. DOI:10.1016/j.apenergy.2019.114176. Chen, C., Fu, Y., Yu, L. L., Li, J. & Li, D. Q. (2017). Removal of methylene blue by seed-watermelon pulp-based low-cost adsorbent: Study of adsorption isotherms and kinetic models. Journal of Dispersion Science and Technology, 38(8), pp. 1142-1146. DOI:10.1080/01932691.2016.1225263. Choi, Y. K., Jang, H. M., Kan, E., Wallace, A. R. & Sun, W. (2019). Adsorption of phosphate in water on a novel calcium hydroxide-coated dairy manure-derived biochar. Environmental Engineering Research, 24(3), pp. 434-442. DOI:10.4491/eer.2018.296. Dai, Y., Wang, W., Lu, L., Yan, L. & Yu, D. (2020). Utilization of biochar for the removal of nitrogen and phosphorus. Journal of Cleaner Production, 257, 120573. DOI:10.1016/j.jclepro.2020.120573. Deng, Y., Li, M., Zhang, Z., Liu, Q., Jiang, K., Tian, J. & Ni, F. (2021). Comparative study on characteristics and mechanism of phosphate adsorption on Mg/Al modified biochar. Journal of Environmental Chemical Engineering, 9(2), 105079. DOI:10.1016/j.jece.2021.105079. Du, J., Zhang, L., Liu, T., Xiao, R., Li, R., Guo, D. & Zhang, Z. (2019). Thermal conversion of a promising phytoremediation plant (Symphytum officinale L.) into biochar: dynamic of potentially toxic elements and environmental acceptability assessment of the biochar. Bioresource technology, 274, pp. 73-82. DOI:10.1016/j.biortech.2018.11.077. Egbedina, A. O., Adebowale, K. O., Olu-Owolabi, B. I., Unuabonah, E. I. & Adesina, M. O. (2021). Green synthesis of ZnO coated hybrid biochar for the synchronous removal of ciprofloxacin and tetracycline in wastewater. RSC advances, 11(30), pp. 18483-18492. DOI: 10.1039/d1ra01130h. Elaigwu, S. E., Usman, L. A., Awolola, G. V., Adebayo, G. B. & Ajayi, R. M. K. (2010). Adsorption of Pb (II) from aqueous solution by activated carbon prepared from cow dung. Environmental Research Journal, 4(4), pp. 257-260. Feng, Q., Chen, M., Wu, P., Zhang, X., Wang, S., Yu, Z. & Wang, B. (2022). Simultaneous reclaiming phosphate and ammonium from aqueous solutions by calcium alginate-biochar composite: Sorption performance and governing mechanisms. Chemical Engineering Journal, 429, 132166. DOI:10.1016/j.cej.2021.132166. Foo, K. Y. & Hameed, B. H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical engineering journal, 156(1), pp. 2-10. DOI:10.1016/j.cej.2009.09.013. Gámiz, B., Hall, K., Spokas, K. A. & Cox, L. (2019). Understanding activation effects on low-temperature biochar for optimization of herbicide sorption. Agronomy, 9(10), 588. DOI: 10.3390/agronomy9100588. Ghosh, M. & Singh, S. P. (2005). A review on phytoremediation of heavy metals and utilization of it’s by products. Asian J Energy Environ, 6(4), 18. Gizaw, A., Zewge, F., Kumar, A., Mekonnen, A. & Tesfaye, M. (2021). A comprehensive review on nitrate and phosphate removal and recovery from aqueous solutions by adsorption. AQUA—Water Infrastructure, Ecosystems and Society, 70(7), pp. 921-947. DOI:10.2166/aqua.2021.146. Gray, M., Johnson, M. G., Dragila, M. I. & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and bioenergy, 61, pp. 196-205. Guo, F., Peng, K., Liang, S., Jia, X., Jiang, X. & Qian, L. (2019). Evaluation of the catalytic performance of different activated biochar catalysts for removal of tar from biomass pyrolysis. Fuel, 258, 116204. DOI:10.1016/j.biombioe.2013.12.010. Gupta, K. & Khatri, O. P. (2017). Reduced graphene oxide as an effective adsorbent for removal of malachite green dye: Plausible adsorption pathways. Journal of colloid and interface science, 501, pp. 11-21. DOI:10.1016/j.jcis.2017.04.035. Hafshejani, L. D., Hooshmand, A., Naseri, A. A., Mohammadi, A. S., Abbasi, F. & Bhatnagar, A. (2016). Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecological Engineering, 95, pp. 101-111. DOI: 10.1016/j.ecoleng.2016.06.035. He, J., Strezov, V., Kumar, R., Weldekidan, H., Jahan, S., Dastjerdi, B. H. & Kan, T. (2019). Pyrolysis of heavy metal contaminated Avicennia marina biomass from phytoremediation: Characterisation of biomass and pyrolysis products. Journal of Cleaner Production, 234, 1235-1245. DOI:10.1016/j.jclepro.2019.06.285. He, J., Strezov, V., Zhou, X., Kumar, R. & Kan, T. (2020). Pyrolysis of heavy metal contaminated biomass pre-treated with ferric salts: Product characterisation and heavy metal deportment. Bioresource Technology, 313, 123641. DOI:10.1016/j.biortech.2020.123641. Hock, P. E. & Zaini, & M. A. A. (2018). Activated carbons by zinc chloride activation for dye removal–a commentary. Acta chimica slovaca, 11(2), pp. 99-106. DOI: 0.2478/acs-2018-0015. Huang, Y., Chu, H., Wang, D. & Hui, S. (2024). Performance and mechanism of benzene adsorption on ZnCl2 one-step modified corn cob biochar. Environmental Science and Pollution Research, 31(10), pp. 15209-15222. DOI: 10.1007/s11356-024-32183-7. Hung, C. Y., Tsai, W. T., Chen, J. W., Lin, Y. Q. & Chang, Y. M. (2017). Characterization of biochar prepared from biogas digestate. Waste management, 66, pp. 53-60. DOI:10.1016/j.wasman.2017.04.034. Inyang, M. I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A. & Cao, X. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology, 46(4), pp. 406-433. DOI:10.1080/10643389.2015.1096880. Ip, A. W. M., Barford, J. P. & McKay, G. (2009). Reactive Black dye adsorption/desorption onto different adsorbents: effect of salt, surface chemistry, pore size and surface area. Journal of colloid and interface science, 337(1), pp. 32-38. DOI:10.1016/j.jcis.2009.05.015. Itodo, A. U., Itodo, H. U. & Gafar, M. K. (2010). Estimation of specific surface area using Langmuir isotherm method. Journal of Applied Sciences and Environmental Management, 14(4). DOI:10.4314/jasem.v14i4.63287. Jing, X. R., Wang, Y. Y., Liu, W. J., Wang, Y. K. & Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 248, pp. 168-174. DOI:10.1016/j.cej.2014.03.006. Kabbashi, N. A., Atieh, M. A., Al-Mamun, A., Mirghami, M. E., Alam, M. D. Z. & Yahya, N. (2009). Kinetic adsorption of application of carbon nanotubes for Pb (II) removal from aqueous solution. Journal of Environmental Sciences, 21(4), pp. 539-544. DOI:10.1016/S1001-0742(08)62305-0. Lalley, J., Han, C., Li, X., Dionysiou, D. D. & Nadagouda, M. N. (2016). Phosphate adsorption using modified iron oxide-based sorbents in lake water: kinetics, equilibrium, and column tests. Chemical Engineering Journal, 284, pp. 1386-1396. DOI:10.1016/j.cej.2015.08.114. Lawal, A. A., Hassan, M. A., Zakaria, M. R., Yusoff, M. Z. M., Norrrahim, M. N. F., Mokhtar, M. N. & Shirai, Y. (2021). Effect of oil palm biomass cellulosic content on nanopore structure and adsorption capacity of biochar. Bioresource Technology, 332, 125070. DOI:10.1016/j.biortech.2021.125070. Lee, H. S. & Shin, H. S. (2021). Competitive adsorption of heavy metals onto modified biochars: Comparison of biochar properties and modification methods. Journal of Environmental Management, 299, 113651. DOI:10.1016/j.jenvman.2021.113651. Lee, S. Y. & Park, S. J. (2013). Determination of the optimal pore size for improved CO2 adsorption in activated carbon fibers. Journal of colloid and interface science, 389(1), pp. 230-235. DOI:10.1016/j.jcis.2012.09.018. Li, B., Hu, J., Xiong, H. & Xiao, Y. (2020). Application and properties of microporous carbons activated by ZnCl2: adsorption behavior and activation mechanism. ACS omega, 5(16), pp. 9398-9407. DOI:10.1021/acsomega.0c00461. Li, X., Zhao, C. & Zhang, M. (2019). Biochar for anionic contaminants removal from water. In Biochar from biomass and waste pp. 143-160. Elsevier. DOI:10.1016/B978-0-12-811729-3.00008-X. Liu, A., Chen, J., Lu, X., Li, D. & Xu, W. (2021). Influence of components interaction on pyrolysis and the explosion of biomass dust. Process Safety and Environmental Protection, 154, pp. 384-392. DOI:10.1016/j.psep.2021.08.032. Liu, L., Ji, M. & Wang, F. (2018). Adsorption of nitrate onto ZnCl2-modified coconut granular activated carbon: kinetics, characteristics, and adsorption dynamics. Advances in Materials Science and Engineering, DOI:10.1155/2018/1939032. Liu, N., Charrua, A. B., Weng, C. H., Yuan, X. & Ding, F. (2015). Characterization of biochars derived from agriculture wastes and their adsorptive removal of atrazine from aqueous solution: A comparative study. Bioresource technology, 198, pp. 55-62. DOI:10.1016/j.biortech.2015.08.129. Liu, W. J., Tian, K., Jiang, H. & Yu, H. Q. (2014). Harvest of Cu NP anchored magnetic carbon materials from Fe/Cu preloaded biomass: their pyrolysis, characterization, and catalytic activity on aqueous reduction of 4-nitrophenol. Green chemistry, 16(9), pp. 4198-4205. DOI:10.1039/C4GC00599F. Machado, L. M., Lütke, S. F., Perondi, D., Godinho, M., Oliveira, M. L., Collazzo, G. C. & Dotto, G. L. (2020). Treatment of effluents containing 2-chlorophenol by adsorption onto chemically and physically activated biochars. Journal of Environmental Chemical Engineering, 8(6), 104473. DOI:10.1016/j.jece.2020.104473. Majd, M. M., Kordzadeh-Kermani, V., Ghalandari, V., Askari, A. & Sillanpää, M. (2022). Adsorption isotherm models: A comprehensive and systematic review (2010− 2020). Science of The Total Environment, 812, 151334. DOI:10.1016/j.scitotenv.2021.151334. Mehdizadeh, S., Sadjadi, S., Ahmadi, S. J. & Outokesh, M. (2014). Removal of heavy metals from aqueous solution using platinum nanopartcles/Zeolite-4A. Journal of Environmental Health Science and Engineering, 12, pp. 1-7. Menya, E., Olupot, P. W., Storz, H., Lubwama, M. & Kiros, Y. (2018). Production and performance of activated carbon from rice husks for removal of natural organic matter from water: a review. Chemical Engineering Research and Design, 129, pp. 271-296. DOI:10.1016/j.cherd.2017.11.008. Milmile, S. N., Pande, J. V., Karmakar, S., Bansiwal, A., Chakrabarti, T. & Biniwale, R. B. (2011). Equilibrium isotherm and kinetic modeling of the adsorption of nitrates by anion exchange Indion NSSR resin. Desalination, 276(1-3), pp. 38-44. DOI:10.1016/j.desal.2011.03.015. Mishra, S. P., Mohapatra, D., Mishra, D., Chattopadhyay, P., Chaudhury, G. R. & Das, R. P. (2014). Arsenic adsorption on natural minerals. J Mater Environ Sci, 5(2), pp. 350-359. Mosa, A., El-Ghamry, A. & Tolba, M. (2018). Functionalized biochar derived from heavy metal-rich feedstock: phosphate recovery and reusing the exhausted biochar as an enriched soil amendment. Chemosphere, 198, pp. 351-363. DOI:10.1016/j.chemosphere.2018.01.113. Muzyka, R., Misztal, E., Hrabak, J., Banks, S. W. & Sajdak, M. (2023). Various biomass pyrolysis conditions influence the porosity and pore size distribution of biochar. Energy, 263, 126128. DOI:10.1016/j.energy.2022.126128. Nandiyanto, A. B. D., Arinalhaq, Z. F., Rahmadianti, S., Dewi, M. W., Rizky, Y. P. C., Maulidina, A. & Yunas, J. (2020). Curcumin Adsorption on Carbon Microparticles: Synthesis from Soursop (AnnonaMuricata L.) Peel Waste, Adsorption Isotherms and Thermodynamic and Adsorption Mechanism. International Journal of Nanoelectronics & Materials, 13. Olalekan, A. P., Dada, A. O. & Okewale, A. O. (2013). Comparative adsorption isotherm study of the removal of Pb2+ and Zn2+ onto agricultural waste. Res. J. Chem. Environ. Sci, 1, pp. 22-27. Paredes-Laverde, M., Salamanca, M., Diaz-Corrales, J. D., Flórez, E., Silva-Agredo, J. & Torres-Palma, R. A. (2021). Understanding the removal of an anionic dye in textile wastewaters by adsorption on ZnCl2 activated carbons from rice and coffee husk wastes: A combined experimental and theoretical study. Journal of Environmental Chemical Engineering, 9(4), 105685. DOI:10.1016/j.jece.2021.105685. Pena, J., Villot, A. & Gerente, C. (2020). Pyrolysis chars and physically activated carbons prepared from buckwheat husks for catalytic purification of syngas. Biomass and bioenergy, 132, 105435. DOI:10.1016/j.biombioe.2019.105435. Priya, E., Kumar, S., Verma, C., Sarkar, S. & Maji, P. K. (2022). A comprehensive review on technological advances of adsorption for removing nitrate and phosphate from wastewater. Journal of Water Process Engineering, 49, 103159. DOI:10.1016/j.jwpe.2022.103159. Sayadi, M., Farasati, M., G Mahmoodlu, M. & Rostami Charati, F. (2020). Removal of nitrate, ammonium, and phosphate from water using conocarpus and paulownia plant biochar. Iranian Journal of Chemistry and Chemical Engineering, 39(4), pp. 205-222. Sefatlhi, K. L., Ultra Jr, V. U. & Majoni, S. (2024). Chemical and Structural Characteristics of Biochars from Phytoremediation Biomass of Cymbopogon Citratus, Cymbopogon Nardus, and Chrysopogon Zizanioides. Waste and Biomass Valorization, 15(1), pp. 283-300. DOI:10.1007/s12649-023-02164-x. Shen, M., Song, B., Zeng, G., Zhang, Y., Teng, F. & Zhou, C. (2021). Surfactant changes lead adsorption behaviors and mechanisms on microplastics. Chemical Engineering Journal, 405, 126989. Tekin, B. & Açikel, U. (2022). Adsorption isotherms for removal of heavy metal ions (copper and nickel) from aqueous solutions in single and binary adsorption processes. Gazi University Journal of Science, 36(2), pp. 495-509. DOI:10.35378/gujs.1066137. Thue, P. S., Lima, D. R., Lima, E. C., Teixeira, R. A., dos Reis, G. S., Dias, S. L. & Machado, F. M. (2022). Comparative studies of physicochemical and adsorptive properties of biochar materials from biomass using different zinc salts as activating agents. Journal of Environmental Chemical Engineering, 10(3), 107632. DOI:10.1016/j.jece.2022.107632. Thue, P. S., Lima, D. R., Lima, E. C., Teixeira, R. A., dos Reis, G. S., Dias, S. L. & Machado, F. M. (2022). Comparative studies of physicochemical and adsorptive properties of biochar materials from biomass using different zinc salts as activating agents. Journal of Environmental Chemical Engineering, 10(3), 107632. DOI:10.1016/j.jece.2022.107632. Ultra, V. U., Ngwako, K. M. & Eliason, P. (2022). Physiological Responses, Growth, and Heavy Metal Accumulation of Citronella (Cymbopogon nardus Rendle.) in Cu-Ni Mine Tailings as Affected by Soil Amendments. Philippine Journal of Science, 151(3). DOI:10.56899/151.03.36. Wang, L., Xu, Z., Fu, Y., Chen, Y., Pan, Z., Wang, R. & Tan, Z. (2018). Comparative analysis on adsorption properties and mechanisms of nitrate and phosphate by modified corn stalks. RSC advances, 8(64), pp. 36468-36476. DOI:10.1039/C8RA06617E. Wang, T., Zheng, J., Liu, H., Peng, Q., Zhou, H. & Zhang, X. (2021). Adsorption characteristics and mechanisms of Pb2+ and Cd2+ by a new agricultural waste–Caragana korshinskii biomass derived biochar. Environmental Science and Pollution Research, 28, pp. 13800-13818. DOI:10.1007/s11356-020-11571-9. Wang, Z., Guo, H., Shen, F., Yang, G., Zhang, Y., Zeng, Y. & Deng, S. (2015). Biochar produced from oak sawdust by Lanthanum (La)-involved pyrolysis for adsorption of ammonium (NH4+), nitrate (NO3−), and phosphate (PO43−). Chemosphere, 119, pp. 646-653. DOI:10.1016/j.chemosphere.2014.07.084. Williams, P. T. & Reed, A. R. (2004). High grade activated carbon matting derived from the chemical activation and pyrolysis of natural fibre textile waste. Journal of analytical and applied pyrolysis, 71(2), pp. 971-986. DOI:10.1016/j.jaap.2003.12.007. Wu, B., Wan, J., Zhang, Y., Pan, B. & Lo, I. M. (2019). Selective phosphate removal from water and wastewater using sorption: process fundamentals and removal mechanisms. Environmental science & technology, 54(1), pp. 50-66. DOI:10.1021/acs.est.9b05569. Xia, M., Chen, Z., Li, Y., Li, C., Ahmad, N. M., Cheema, W. A. & Zhu, S. (2019). Removal of Hg (II) in aqueous solutions through physical and chemical adsorption principles. RSC advances, 9(36), pp. 20941-20953. DOI:10.1039/C9RA01924C. Xia, Y., Zhou, J. J., Gong, Y. Y., Li, Z. J. & Zeng, E. Y. (2020). Strong influence of surfactants on virgin hydrophobic microplastics adsorbing ionic organic pollutants. Environmental Pollution, 265, 115061. DOI:10.1016/j.envpol.2020.115061. Xie, T., Reddy, K. R., Wang, C., Yargicoglu, E. & Spokas, K. (2015). Characteristics and applications of biochar for environmental remediation: a review. Critical Reviews in Environmental Science and Technology, 45(9), pp. 939-969. DOI:10.1080/10643389.2014.924180. Xu, D. D., Ma, R. R., Fu, A. P., Guan, Z., Zhong, N., Peng, H. & Duan, C. G. (2021). Ion adsorption-induced reversible polarization switching of a van der Waals layered ferroelectric. Nature communications, 12(1), 655. DOI:10.1038/s41467-021-20945-7. Yağmur, H. K. & Kaya, İ. (2021). Synthesis and characterization of magnetic ZnCl2-activated carbon produced from coconut shell for the adsorption of methylene blue. Journal of molecular structure, 1232, 130071. DOI:10.1016/j.molstruc.2021.130071. Yan, L., Liu, Y., Zhang, Y., Liu, S., Wang, C., Chen, W. & Zhang, Y. (2020). ZnCl2 modified biochar derived from aerobic granular sludge for developed microporosity and enhanced adsorption to tetracycline. Bioresource Technology, 297, 122381. DOI:10.1016/j.biortech.2019.122381. Yang, S., Katuwal, S., Zheng, W., Sharma, B. & Cooke, R. (2021). Capture and recover dissolved phosphorous from aqueous solutions by a designer biochar: Mechanism and performance insights. Chemosphere, 274, 129717. DOI:10.1016/j.chemosphere.2021.12 Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P. & Yang, L. (2011). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of hazardous materials, 190(1-3), pp. 501-507. DOI:10.1016/j.jhazmat.2011.03.083. Yao, Y., Gao, B., Zhang, M., Inyang, M. & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in sandy soil. Chemosphere, 89(11), pp. 1467-1471. DOI:10.1016/j.chemosphere.2012.06.002. Yin, Q., Ren, H., Wang, R. & Zhao, Z. (2018). Evaluation of nitrate and phosphate adsorption on Al-modified biochar: influence of Al content. Science of the Total Environment, 631, pp. 895-903. DOI:10.1016/j.scitotenv.2018.03.091. Zhang, M., Song, G., Gelardi, D. L., Huang, L., Khan, E., Mašek, O. & Ok, Y. S. (2020). Evaluating biochar and its modifications for the removal of ammonium, nitrate, and phosphate in water. Water Research, 186, 116303. DOI:10.1016/j.watres.2020.116303. Zhao, B., Xu, X., Xu, S., Chen, X., Li, H. & Zeng, F. (2017). Surface characteristics and potential ecological risk evaluation of heavy metals in the bio-char produced by co-pyrolysis from municipal sewage sludge and hazelnut shell with zinc chloride. Bioresource technology, 243, pp. 375-383.DOI:10.1016/j.biortech.2017.06.032. Zhao, L., Cao, X., Zheng, W., Wang, Q. & Yang, F. (2015). Endogenous minerals have influences on surface electrochemistry and ion exchange properties of biochar. Chemosphere, 136, pp. 133-139. DOI:10.1016/j.chemosphere.2015.04.053. Zhao, S., Zhou, N. & Shen, X. (2016). Driving mechanisms of nitrogen transport and transformation in lacustrine wetlands. Science China Earth Sciences, 59, pp. 464-476. DOI:10.1007/s11430-015-5230-3. Zubir, M. H. M. & Zaini, M. A. A. (2020). Twigs-derived activated carbons via H3PO4/ZnCl2 composite activation for methylene blue and congo red dye removal. Scientific reports, 10(1), 14050. DOI:10.1038/s41598-020-71034-6.
Go to article

Authors and Affiliations

Katlarelo Lenny Sefatlhi
1
ORCID: ORCID
Venecio U Ultra
1
ORCID: ORCID
Majoni Stephen
1
ORCID: ORCID
Sylwia Oleszek
2
Trust Manyiwa
1
ORCID: ORCID

  1. Botswana International University of Science and Technology, Department of Earth and Environmental Sciences, Botswana
  2. Kyoto University, Department of Environmental Engineering, Kyoto, Japan
Download PDF Download RIS Download Bibtex

Abstract

The increasing demand for indium, gallium, and germanium driven by high-tech industries has spurred extensive research into their environmental interaction, despite their rarity in the Earth's crust. Understanding the chemical forms and mechanisms of occurrence of these elements – from production through – and their interactions with the environment is crucial for future environmental impact assessments. The aim of this paper is to highlight: (i) the compounds and applications of indium, gallium, and germanium in high-tech manufacturing, (ii) the complexes of these elements, their reactivity, and stability under specific conditions, (iii) possibilities for recovering and recycling these elements from end-of-life (EOL) products through leaching and extraction, (iv) their toxicity and health impacts, and (v) pollution indices affected by background concentrations of these elements in soils or sediments. Despite their low natural abundance and low recycling input rates (IRI), the lack of comprehensive toxicity data poses a significant challenge in assessing the potential ecological risk index (RI). Moreover, insufficient background data on the concentration of these elements in various environmental samples underscores the need for further research and investigation in the future.
Go to article

Bibliography

  1. Adamiec, E., Jarosz-Krzemińska, E., Brzoza-Woch, R., Rzeszutek, M., Bartyzel, J., Pełech-Pilichowski, T. & Zyśk, J. (2023). The geochemical and fractionation study on toxic elements in road dust collected from the arterial roads in Kraków. Archives of Environmental Protection, 49, 2, pp. 104–110. DOI 10.24425/aep.2023.145902
  2. Amiel, N., Dror, I., Zurieli, A., Livshitz, Y., Reshef, G. & Berkowitz, B. (2021). Selected technology-critical elements as indicators of anthropogenic groundwater contamination. Environmental Pollution, 284, 117156. DOI:10.1016/j.envpol.2021.117156
  3. Andrzejewska-Górecka, D.A., Poniatowska, A., Macherzyński, B., Wojewódka, D. & Sierakowski, M. (2019), Release of critical metals from furnace wastes using the process of bioleaching in various variants. Archives of Environmental Protection, 45, 3, pp. 72–78. DOI: 10.24425/aep.2019.128643
  4. Annoni, R., Lange, L.C., Santos Amaral, M.C., Silva, A.M., Assunção, M.C., Franco, M. B. & De Souza, W. (2020). Light emitting diode waste: Potential of metals concentration and acid reuse via the integration of leaching and membrane processes. Journal of Cleaner Production, 246, 119057. DOI:10.1016/j.jclepro.2019.119057
  5. Batley, G.E. & Campbell, P.G.C. (2022). Metal contaminants of emerging concern in aquatic systems. Environmental Chemistry, 19(1), pp. 23–40. DOI:10.1071/EN22030
  6. Bačić, N., Mikac, N., Lučić, M., & Sondi, I. (2021). Occurrence and distribution of technology-critical elements in recent freshwater and marine pristine lake sediments in Croatia: A case study. Archives of Environmental Contamination and Toxicology, 81(4), pp. 574-588. DOI:10.1007/s00244-021-00863-x
  7. Benézéth, P., Diakonov, I.I., Pokrovski, G.S., Dandurand, J., Schott, J. & Khodakovsky, I.L. (1997). Gallium speciation in aqueous solution. Experimental study and modelling: Part 2. Solubility of α-GaOOH in acidic solutions from 150 to 250°C and hydrolysis constants of gallium (III) to 300°C. Geochimica et Cosmochimica Acta, 61(7), pp. 1345-1357. DOI:10.1016/S0016-7037(97)00012-4
  8. Benoit, R.L. & Place, J. (1963). Fluoride complexes of germanium (IV) in aqueous solution. Canadian Journal of Chemistry, 41(5), pp. 1170-1180. DOI:10.1139/v63-165
  9. Bernstein, L.R. (1985). Germanium geochemistry and mineralogy. Geochimica et Cosmochimica Acta, 49(11), pp. 2409-2422. DOI:10.1016/0016-7037(85)90241-8
  10. Bernstein, L.R. & Waychunas, G.A. (1987). Germanium crystal chemistry in hematite and goethite from the Apex Mine, Utah, and some new data on germanium in aqueous solution and in stottite. Geochimica et Cosmochimica Acta, 51(3), pp. 623-630. DOI:10.1016/0016-7037(87)90074-3
  11. Bobba, S., Claudiu, P., Huygens, D., Alves Dias, P., Gawlik, B., Tzimas, E. & Garbarino, E. (2018). Report on critical raw materials and the circular economy. Luxembourg: EU. DOI:10.2873/331561.
  12. Boluda-Botella, N., Saquete, M.D. & Sanz-Lázaro, C. (2023). Holothuria tubulosa as a bioindicator to analyse metal pollution on the coast of Alicante (Spain). Journal of Sea Research, 192, 102364. DOI:10.1016/j.seares.2023.102364
  13. Bomhard, E.M. (2018). The toxicology of indium oxide. Environmental Toxicology and Pharmacology, 58, pp. 250-258. DOI:10.1016/j.etap.2018.02.003
  14. Bomhard, E.M. (2020). The toxicology of gallium oxide in comparison with gallium arsenide and indium oxide. Environmental Toxicology and Pharmacology, 80, 103437. DOI:10.1016/j.etap.2020.103437
  15. Brun, N., Wehrli, B. & Fent, K. (2016). Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells. Science of The Total Environment, 543, pp. 703–714. DOI: 10.1016/j.scitotenv.2015.11.074
  16. Bu-Olayan, A.H. & Thomas, B.V. (2020). Bourgeoning impact of the technology critical elements in the marine environment. Environmental Pollution, 265, 115064 DOI:10.1016/j.envpol.2020.115064
  17. Butcher, T. & Brown, T. (2014). Gallium, [In:] Critical Minerals Handbook. G Gunn. (ed.), John Wiley &Sons. Chapter 7, pp 257-305. DOI:10.1002/9781118755341.ch7
  18. Cenci, M.P., Dal Berto, F.C., Schneider, E.L. & Veit, H.M. (2020). Assessment of LED lamps components and materials for a recycling perspective. Waste Management, 107, pp. 285-293. DOI:10.1016/j.wasman.2020.04.028
  19. Chang, H., Yang, P., Hashimoto, Y., Yeh, K. & Wang, S. (2023). Temporal transformation of indium speciation in rice paddy soils and spatial distribution of indium in rice rhizosphere. Environmental Pollution, 326, 121473. DOI:10.1016/j.envpol.2023.121473
  20. Chang, H.F., Yang, P.T., Lin, H.W., Yeh, K.C., Chen, M.N. & Wang, S.L. (2020a). Indium uptake and accumulation by rice and wheat and health risk associated with their consumption. Environmental Science & Technology, 54(23), pp. 14946-14954. DOI:10.1021/acs.est.0c02676
  21. Chang, H.F., Wang, S.L., Lee, D.C., Hsiao, S.S.Y., Hashimoto, Y. & Yeh, K.C. (2020b). Assessment of indium toxicity to the model plant Arabidopsis. Journal of Hazardous Materials, 387, 121983. DOI:10.1016/j.jhazmat.2019.121983
  22. Charles, R.G., Douglas, P., Dowling, M., Liversage, G. & Davies, M.L. (2020). Towards Increased Recovery of Critical Raw Materials from WEEE– evaluation of CRMs at a component level and pre-processing methods for interface optimisation with recovery processes. Resources, Conservation and Recycling, 161, 104923. DOI:10.1016/j.resconrec.2020.104923
  23. Cheah, B.H., Liao, P., Lo, J., Wang, Y., Tang, I., Yeh, K., Lee, D. & Lin, Y. (2022). Insight into the mechanism of indium toxicity in rice. Journal of Hazardous Materials, 429, 128265. DOI:10.1016/j.jhazmat.2022.128265
  24. Chen, K., Yang, P., Chang, H., Yeh, K. & Wang, S. (2022). Soil gallium speciation and resulting gallium uptake by rice plants. Journal of Hazardous Materials, 424, 127582. DOI:10.1016/j.jhazmat.2021.127582
  25. Chen, T.B., Zheng, Y.M., Lei, M., Huang, Z.C., Wu, H.T., Chen, H., ... & Tian, Q.Z. (2005). Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere, 60(4), pp. 542-551. DOI:10.1016/j.chemosphere.2004.12.072
  26. Chen, W., Chang, B. & Chiu, K. (2017). Recovery of germanium from waste Optical Fibers by hydrometallurgical method. Journal of Environmental Chemical Engineering, 5(5), pp. 5215-5221. DOI:10.1016/j.jece.2017.09.048
  27. Chen, W.S., Chang, B.C. & Shuai, C.K. (2020a). Improve subsequent leaching efficiency and extraction rate of germanium in optical fibre cables with pre-treatment. IOP Conference Series: Materials Science and Engineering 720(1), 012005). DOI:10.1088/1757-899X/720/1/012005
  28. Chen, W.S., Chung, Y.F. & Tien, K.W. (2020b). Recovery of gallium and indium from waste light emitting diodes. Resources Recycling, 29(1), pp. 81-88. DOI:10.7844/kirr.2020.29.1.81
  29. Cheng, W., Lei, S., Bian, Z., Zhao, Y., Li, Y. & Gan, Y. (2020). Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. Journal of Hazardous Materials, 387, 121666. DOI:10.1016/j.jhazmat.2019.121666
  30. Chinnam, R., Ujaczki, É. & O'Donoghue, L. (2020). Leaching indium from discarded LCD glass: A rapid and environmentally friendly process. Journal of Cleaner Production, 277, 122868. DOI:10.1016/j.jclepro.2020.122868
  31. Ciavatta, L., Iuliano, M., Porto, R. & Vasca, E. (1990). Fluorogermanate(IV) equilibria in acid media. Polyhedron, 9(10), pp. 1263-1270. DOI:10.1016/S0277-5387(00)86762-5
  32. Cobelo-García, A., Filella, M., Croot, P., Frazzoli, C., Du Laing, G., Ospina-Alvarez, N. & Zimmermann, S. (2015). COST action TD1407: network on technology-critical elements (NOTICE) from environmental processes to human health threats. Environmental Science and Pollution Research, 22(19), pp. 15188–15194. DOI:10.1007/s11356-015-5221-0
  33. Cummings K.J., Virji M. A. & Park J. Y. et al. (2016). Respirable indium exposures, plasma indium, and respiratory health among indium-tin oxide (ITO) workers. American Journal of Industrial Medicine, 59(7), pp. 522-531
  34. Dang D.H., Filella M. & Omanović D. (2021). Technology‑Critical Elements: An Emerging and Vital Resource that Requires more In‑depth Investigation. Archives of Environmental Contamination and Toxicology, 81, pp. 517–520, DOI:10.1007/s00244-021-00892-6
  35. Deferm, C., Onghena, B., Vander Hoogerstraete, T., Banerjee, D., Luyten, J., Oosterhof, H. & Binnemans, K. (2017). Speciation of indium (III) chloro complexes in the solvent extraction process from chloride aqueous solutions to ionic liquids. Dalton Transactions, 46(13), pp. 4412-4421. DOI:10.1039/C7DT00618G
  36. Deichman, E.N., Tananaev, I.V., Ezhova, Zh.A. & Kuz’mina, T.N. (1968). Indium phosphate. Russian Journal of Inorganic Chemistry 13, pp. 23 – 25.
  37. Diakonov, I.I., Pokrovski, G.S., Bénézeth, P., Schott, J., Dandurand, J. & Escalier, J. (1997). Gallium speciation in aqueous solution. Experimental study and modelling: Part 1. Thermodynamic properties of Ga(OH)4− to 300°C. Geochimica et Cosmochimica Acta, 61(7), pp. 1333-1343. DOI:10.1016/S0016-7037(97)00011-2
  38. EC JRC, 2016. Raw materials scoreboard. European Commission, Brussels, Belgium. DOI:10.2873/686373
  39. Ettler, V., Mihaljevič, M., Strnad, L., Kříbek, B., Hrstka, T., Kamona, F. & Mapani, B. (2022). Gallium and germanium extraction and potential recovery from metallurgical slags. Journal of Cleaner Production, 379, 134677. DOI:10.1016/j.jclepro.2022.134677
  40. European Commission. (2020). Study on the EU’s list of Critical Raw Materials. Factsheets on Non-Critical Raw Materials. DOI:10.2873/867993
  41. European Commission. (2023). Study on the Critical Raw Materials for the EU 2023-Final Report. DOI:10.2873/725585
  42. Eurostat, Contribution of recycled materials to raw materials demand - end-of-life recycling input rates (EOL-RIR) (2023). Eurostat. Retrieved October 8, 2023, from https://ec.europa.eu/eurostat/databrowser/view/CEI_SRM010/default/table
  43. Everest, D.A. & Harrison, J.C. (1957). Studies in the chemistry of quadrivalent germanium. Part IV. The chemical nature of solutions of quadrivalent germanium in hydrochloric or hydrobromic acid. Journal of the Chemical Society (Resumed), pp. 1820-1823. DOI:10.1039/JR9570001820
  44. Filella, M. & Matoušek, T. (2022). Germanium in Lake Geneva (Switzerland/France) along the spring productivity period. Applied Geochemistry, 143, 105352. DOI:10.1016/j.apgeochem.2022.105352
  45. Filella, M. & May, P.M. (2023). The aqueous solution chemistry of germanium under conditions of environmental and biological interest: Inorganic ligands. Applied Geochemistry, 105631. DOI:10.1016/j.apgeochem.2023.105631
  46. Frenzel, M., Mikolajczak, C., Reuter, M. A. & Gutzmer, J. (2017). Quantifying the relative availability of high-tech by-product metals – The cases of gallium, germanium and indium. Resources Policy, 52, pp. 327-335. DOI:10.1016/j.resourpol.2017.04.008
  47. Frei MS, Mondelli C, García-Muelas R. & Pérez-Ramírez J. (2019), Atomic-scale engineering of indium oxide promotion by palladium for methanol production via CO2 hydrogenation. Nature Communications, 10(1), 3377. DOI:10.1038/s41467-019-11349-9
  48. García-Figueroa, A., Filella, M. & Matoušek, T. (2021). Speciation of germanium in environmental water reference materials by hydride generation and cryotrapping in combination with ICP-MS/MS. Talanta, 225, 121972. DOI:10.1016/j.talanta.2020.121972
  49. Glei, M. (2004). Germanium. [In:]  Elements and their compounds in the environment—Occurrence, analysis and biological relevance, Merian, E., Anke, M., Ihnat, M. & Stoeppler, M.S (eds.), Weinheim, Germany, Wiley-VCH Verlag GmbH, pp. 787–793. http://dx.doi.org/10.1002/9783527619634.ch31.
  50. Grohol, M. & Veeh, C. (2023). Study on the Critical Raw Materials for the EU 2023. Final Report DG GROW. DOI:10.2873/725585
  51. Gunn, G. (Ed.). (2014). Critical metals handbook. John Wiley & Sons. DOI:10.1002/9781118755341
  52. Hagvall, K., Persson, P. & Karlsson, T. (2014). Spectroscopic characterization of the coordination chemistry and hydrolysis of gallium(III) in the presence of aquatic organic matter. Geochimica et Cosmochimica Acta, 146, pp. 76-89. DOI:10.1016/j.gca.2014.10.006
  53. Hardacre, C., Murphy, R.W., Seddon, K.R., Srinivasan, G. & Swadźba-Kwaśny, M. (2010). Speciation of chlorometallate ionic liquids based on gallium (III) and indium (III). Australian Journal of Chemistry, 63(5), pp. 845-848. DOI:10.1071/CH10014
  54. Höll, R., Kling, M. & Schroll, E. (2007). Metallogenesis of germanium - A review. Ore Geology Reviews, 30(3-4), pp. 145-180. DOI:10.1016/j.oregeorev.2005.07.034
  55. Iqbal, A., Jan, M. R., Shah, J. & Rashid, B. (2022). Recovery of critical metals from leach solution of electronic waste using magnetite electrospun carbon nanofibres composite. Environmental Science and Pollution Research, 29(59), pp. 88763-88778. DOI:10.1007/s11356-022-21843-1
  56. Jabłońska-Czapla, M. & Grygoyć, K. (2021). Speciation and Fractionation of Less-Studied Technology-Critical Elements (Nb, Ta, Ga, In, Ge, Tl, Te): A Review. Polish Journal of Environmental Studies, 30(2), pp. 1477-1486. DOI:10.15244/pjoes/127281
  57. Jabłońska-Czapla, M., Grygoyć, K. & Rachwał, M. (2022) Antimony speciation in soils in areas subjected to industrial anthropopressure. Archives of Environmental Protection, 48, 2 pp. 42–52. DOI 10.24425/aep.2022.140765
  58. Jabłońska-Czapla, M., Grygoyć, K., Rachwał, M., Fornalczyk, A. & Willner, J. (2023). Germanium speciation study in soil from an electronic waste processing plant area. Journal of Soils and Sediments, pp. 1-14. DOI:10.1007/s11368-023-03566-z
  59. Jensen, H., Gaw, S., Lehto, N.J., Hassall, L. & Robinson, B.H. (2018). The mobility and plant uptake of gallium and indium, two emerging contaminants associated with electronic waste and other sources. Chemosphere, 209, pp. 675-684. DOI:10.1016/j.chemosphere.2018.06.111
  60. Jin, Y., Kim, J. & Guillaume, B. (2016). Review of critical material studies. Resources, Conservation and Recycling, 113, pp. 77-87. DOI:10.1016/j.resconrec.2016.06.003
  61. Karbowska, B., Zembrzuski, W. & Zembrzuska, J. (2022). Mobile forms vs the total content of thallium in activated sludge. Archives of Environmental Protection, 48, 3 pp. 21–27. DOI 10.24425/aep.2022.142686
  62. Klein, O., Zimmermann, T., Hildebrandt, L. & Pröfrock, D. (2022a). Technology-critical elements in Rhine sediments - A case study on occurrence and spatial distribution. Science of The Total Environment, 852, 158464. DOI:10.1016/j.scitotenv.2022.158464
  63. Klein, O., Zimmermann, T., Ebeling, A., Kruse, M., Kirchgeorg, T. & Pröfrock, D. (2022b). Occurrence and temporal variation of technology-critical elements in North Sea sediments—a determination of preliminary reference values. Archives of Environmental Contamination and Toxicology, 82(4), pp. 481-492. DOI:10.1007/s00244-022-00929-4
  64. Kicińska, A. (2019). Environmental risk related to presence and mobility of As, Cd and Tl in soils in the vicinity of a metallurgical plant – Long-term observations. Chemosphere, 236, 124308. DOI:10.1016/j.chemosphere.2019.07.039
  65. Kicińska, A. & Wikar, J. (2020). Ecological risk associated with agricultural production in soils contaminated by the activities of the metal ore mining and processing industry - example from southern Poland. Soil and Tillage Research, 205, 104817. DOI:10.1016/j.still.2020.104817
  66. Kouhail Y., Abdou M. & Gil-Díaz T. (2022). Technology Critical Elements in groundwater resources -knowledge and gaps in the early 2020’s. Current Opinion in Environmental Science & Health, 26, 100329. DOI:10.1016/j.coesh.2022.100329
  67. Kouhail Y., Dror I. & Berkowitz B. (2020). Current knowledge on transport and reactivity of technology-critical elements (TCEs) in soil and aquifer environments. Environmental Chemistry, 17, pp. 118–132. DOI:10.1071/EN19102
  68. Krystek P. & Ritsema R. (2004). Analytical product study of germanium-containing medicine by different ICP-MS applications. Journal of Trace Elements in Medicine and Biology, 18, pp. 9-16. DOI:10.1016/j.jtemb.2004.04.003
  69. Kurtz, A.C., Derry, L.A. & Chadwick, O.A. (2002). Germanium-silicon fractionation in the weathering environment. Geochimica et Cosmochimica Acta, 66(9), pp. 1525-1537. DOI:10.1016/S0016-7037(01)00869-9
  70. Ladenberger, A., Demetriades, A., Reimann, C., Birke, M., Sadeghi, M., Uhlbäck, J., Andersson, M. & Jonsson, E. (2015). GEMAS: Indium in agricultural and grazing land soil of Europe - Its source and geochemical distribution patterns. Journal of Geochemical Exploration, 154, pp. 61-80. DOI:10.1016/j.gexplo.2014.11.020
  71. Lehmann, F., Daus, B. & Reemtsma, T. (2019). Germanium speciation using liquid chromatography-inductively coupled plasma-triple quadrupole mass spectrometry: Germanium in biological and chemical leaching solutions of fine-grained residues from copper smelting. Journal of Chromatography A, 1593, pp. 47-53. DOI:10.1016/j.chroma.2019.01.061
  72. Levason, W., Reid, G. & Zhang, W. (2011). Coordination complexes of silicon and germanium halides with neutral ligands. Coordination Chemistry Reviews, 255(11-12), pp. 1319-1341. DOI:10.1016/j.ccr.2010.11.019
  73. Licht C., Talens Peiro L. & Villalba G. (2015). Global Substance Flow Analysis of Gallium, Germanium, and Indium. Journal of Industrial Ecology, 19(5), pp. 890-903. DOI:10.1111/jiec.12287
  74. Liu, Y., Shaheen, S.M., Rinklebe, J. & Hseu, Z. (2021). Pedogeochemical distribution of gallium, indium and thallium, their potential availability and associated risk in highly-weathered soil profiles of Taiwan. Environmental Research, 197, 110994. DOI:10.1016/j.envres.2021.110994
  75. Lo, I.M., & Yang, X.Y. (1999). EDTA extraction of heavy metals from different soil fractions and synthetic soils. Water, Air, and Soil Pollution, 109, pp. 219-236. DOI:10.1023/A:1005000520321
  76. Lugolobi, F., Kurtz, A.C. & Derry, L.A. (2010). Germanium–silicon fractionation in a tropical, granitic weathering environment. Geochimica et Cosmochimica Acta, 74(4), pp. 1294-1308. DOI:10.1016/j.gca.2009.11.027
  77. Lv, Y., Xing, P., Ma, B., Liu, B., Wang, C., Zhang, Y., & Zhang, W. (2019). Separation and recovery of valuable elements from spent CIGS materials. ACS Sustainable Chemistry & Engineering, 7, 24, pp. 19816–19823. DOI:10.1021/acssuschemeng.9b05121
  78. Łyszczarz, S., Błońska, E. & Lasota, J. (2020). The application of the geo-accumulation index and geostatistical methods to the assessment of forest soil contamination with heavy metals in the Babia Góra National Park (Poland). Archives of Environmental Protection, 46, 3 pp. 69–79. DOI 10.24425/aep.2020.134537
  79. Maeno, Z., Yasumura, S., Wu, X., Huang, M., Liu, C., Toyao, T. & Shimizu, K.I. (2020). Isolated indium hydrides in CHA zeolites: speciation and catalysis for nonoxidative dehydrogenation of ethane. Journal of the American Chemical Society, 142(10), pp. 4820-4832. DOI:10.1021/jacs.9b13865
  80. Min K, Johnson D. & Trumble K. (2018). Thermodynamic Study of Ga Extraction for Trace Element Analysis by ICP-MS. [In:] Rare Metal Technology Kim H., Wesstrom B., Alam S., Ouchi T., Azimi G,. Neelameggham N.R., Wang S., Guan X. (Eds.), Springer, pp. 157-164.
  81. Muller, G. (1979). Heavy metals in the sediments of the Rhine: Changes since 1971. Umschav, 79, pp. 778-783. (in German)
  82. Mohammed, K. S., Usman, M., Ahmad, P. & Bulgamaa, U. (2023). Do all renewable energy stocks react to the war in Ukraine? Russo-Ukrainian conflict perspective. Environmental Science and Pollution Research International, 30(13), pp. 36782-36793. DOI:10.1007/s11356-022-24833-5
  83. Nawrot, N., Wojciechowska, E., Mohsin, M., Kuittinen, S., Pappinen, A. & Rezania, S. (2021). Trace Metal Contamination of Bottom Sediments: A Review of Assessment Measures and Geochemical Background Determination Methods. Minerals, 11(8), 872. DOI:10.3390/min11080872
  84. Négrel, P., Ladenberger, A., Reimann, C., Birke, M. & Sadeghi, M. (2016). GEMAS: Source, distribution patterns and geochemical behaviour of Ge in agricultural and grazing land soils at European continental scale. Applied Geochemistry, 72, pp. 113-124. DOI:10.1016/j.apgeochem.2016.07.004
  85. Ohashi, H., Uehara, N. & Shijo, Y. (1991). Simultaneous determination of molybdenum, vanadium, gallium, copper, iron and indium as 8-quinolinolate complexes by high-performance liquid chromatography. Journal of Chromatography A, 539(1), pp. 225-231. DOI:10.1016/S0021-9673(01)95379-8
  86. Occupational Safety and Health Administration, 2013a, Chemical sampling information—Germanium tetrahydride, CAS no. 7782–65–2: U.S. Department of Labor, Occupational Safety and Health Administration Web page, accessed November 30, 2015, at http://www.osha.gov/dts/chemicalsampling/data/CH_243200.html
  87. Petrucci, R.H., Herring, F.G., Madura, J.D. & Bissonnette, C. (2017). Chemistry of the Main-Group Elements I: Groups 1, 2, 13, and 14, [In:] General chemistry: Principles and modern applications (11th ed., pp. 978–1027), Pearson Canada.
  88. Pokrovsky, O., Pokrovski, G., Schott, J. & Galy, A. (2006). Experimental study of germanium adsorption on goethite and germanium coprecipitation with iron hydroxide: X-ray absorption fine structure and macroscopic characterization. Geochimica et Cosmochimica Acta, 70(13), pp. 3325-3341. DOI:10.1016/j.gca.2006.04.012
  89. Połedniok, J. (2008). Speciation of scandium and gallium in soil. Chemosphere, 73(4), pp. 572-579. DOI:10.1016/j.chemosphere.2008.06.012
  90. Pokrovski, G.S. & Schott, J. (1998a). Thermodynamic properties of aqueous Ge(IV) hydroxide complexes from 25 to 350°C: Implications for the behavior of germanium and the Ge/Si ratio in hydrothermal fluids. Geochimica et Cosmochimica Acta, 62(9), pp. 1631-1642. DOI:10.1016/S0016-7037(98)00081-7
  91. Pokrovski, G.S. & Schott, J. (1998b). Experimental study of the complexation of silicon and germanium with aqueous organic species: Implications for germanium and silicon transport and Ge/Si ratio in natural waters. Geochimica et Cosmochimica Acta, 62(21-22), pp. 3413-3428. DOI:10.1016/S0016-7037(98)00249-X
  92. Pommerrenig B, Diehn T.A. & Bienert G.P. (2015). Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport. Plant Science, 238, pp. 212–227. doi:10.1016/j.plantsci.2015.
  93. Reimann, C., Fabian, K., Birke, M., Filzmoser, P., Demetriades, A., Négrel, P., Oorts, K., Matschullat, J. & de Caritat, P. (2018). GEMAS: Establishing geochemical background and threshold for 53 chemical elements in European agricultural soil. Applied Geochemistry, 88, pp. 302-318. DOI:10.1016/j.apgeochem.2017.01.021
  94. Ringering, K., Kouhail, Y., Yecheskel, Y., Dror, I. & Berkowitz, B. (2019). Mobility and retention of indium and gallium in saturated porous media. Journal of Hazardous Materials, 363, pp. 394-400. DOI:10.1016/j.jhazmat.2018.09.079
  95. Romero-Freire A., Santos-Echeandía J., Neira P. & Cobelo-García A. (2019). Less-Studied Technology-Critical Elements (Nb, Ta, Ga, In, Ge, Te) in the Marine Environment: Review on Their Concentrations in Water and Organisms. Frontiers in Marine Science, 6, 532. DOI:10.3389/fmars.2019.00532
  96. Rongguo, C., Juan, G., Liwen, Y., Huy, D. & Liedtke, M. (2016). Supply and demand of lithium and gallium. BGR. https://www.bgr.bund.de/EN/Themen/Min_rohstoffe/Downloads/studie_Li_Ga.html
  97. Rotureau, E., Pla-Vilanova, P., Galceran, J., Companys, E. & Pinheiro, J.P. (2019). Towards improving the electroanalytical speciation analysis of indium. Analytica Chimica Acta, 1052, pp. 57-64. DOI:10.1016/j.aca.2018.11.061
  98. Rudnick, R. & Gao, S. (2013). Composition of the Continental Crust. Treatise on Geochemistry (Second Edition), pp. 1-51. DOI:10.1016/B978-0-08-095975-7.00301-6
  99. Ryss, I.G. & Kulish, N.F. (1964). Hydrolysis of potassium hexafluorogermanate in aqueous solution. Russian Journal of Inorganic Chemistry, 9, pp. 752-754.
  100. Savvilotidou, V. & Gidarakos, E. (2020). Pre-concentration and recovery of silver and indium from crystalline silicon and copper indium selenide photovoltaic panels. Journal of Cleaner Production, 250, 119440. DOI:10.1016/j.jclepro.2019.119440
  101. Scribner, A.M., Kurtz, A.C & Chadwick, O.A. (2006). Germanium sequestration by soil: Targeting the roles of secondary clays and Fe-oxyhydroxides. Earth and Planetary Science Letters, 243(3-4), pp. 760-770. DOI:10.1016/j.epsl.2006.01.051
  102. Shiller, A.M. (1998). Dissolved gallium in the Atlantic Ocean. Marine Chemistry, 61(1-2), 87-99. DOI:10.1016/S0304-4203(98)00009-7
  103. Shotyk, W., Bicalho, B., Cuss, C. W., Donner, M. W., Grant-Weaver, I., Haas-Neill, S., Javed, M. B., Krachler, M., Noernberg, T., Pelletier, R. & Zaccone, C. (2017). Trace metals in the dissolved fraction (< 0.45 μm) of the lower Athabasca River: Analytical challenges and environmental implications. Science of The Total Environment, 580, pp. 660-669. DOI:10.1016/j.scitotenv.2016.12.012
  104. Su J.Y., Syu C.H. & Lee D.Y., (2018). Growth inhibition of rice (Oryza sativa L.) seedlings in Ga- and In- contaminated acidic soils is respectively caused by Al and Al+ In toxicity. Journal of Hazardous Materials, 344, pp. 274-282. DOI:10.1016/j.jhazmat.2017.10.023
  105. Syu, C.H., Chen, L. & Lee, D. (2021). The growth and uptake of gallium (Ga) and indium (In) of wheat seedlings in Ga- and In-contaminated soils. Science of The Total Environment, 759, 143943. DOI:10.1016/j.scitotenv.2020.143943
  106. Syu, C.H., Chen, P.W., Huang, C.C. & Lee, D.Y. (2020). Accumulation of gallium (Ga) and indium (In) in rice grains in Ga-and In-contaminated paddy soils. Environmental Pollution, 261, 114189. DOI:10.1016/j.envpol.2020.114189
  107. Tanaka, A., Hirata, M., Kiyohara, Y., Nakano, M., Omae, K., Shiratani, M. & Koga, K. 2010. Review of pulmonary toxicity of indium compounds to animals and humans. Thin Solid Films, 518, 11, pp. 2934–2936. http://dx.doi.org/10.1016/j.tsf.2009.10.123.
  108. Tehrani, M.H., Companys, E., Dago, A., Puy, J. & Galceran, J. (2019). New methodology to measure low free indium (III) concentrations based on the determination of the lability degree of indium complexes. Assessment of In(OH)3 solubility product. Journal of Electroanalytical Chemistry, 847,113185. DOI:10.1016/j.jelechem.2019.05.067
  109. Theocharis, M., Tsakiridis, P.E., Kousi, P., Hatzikioseyian, A., Zarkadas, I., Remoundaki, E. & Lyberatos, G. (2021). Hydrometallurgical Treatment for the Extraction and Separation of Indium and Gallium from End-of-Life CIGS Photovoltaic Panels. Materials Proceedings, 5(1), 51. DOI:10.3390/materproc2021005051
  110. Tessier, A.P.G.C., Campbell, P.G. & Bisson, M.J.A.C. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical chemistry, 51(7), pp. 844-851. DOI:10.1021/ac50043a017
  111. U.S. Geological Survey, (2014a). Indium statistics.[In:]Kelly, T.D. and Matos, G.R., comps., Historical statistics for mineral and material commodities in the United States: U.S. Geological Survey Data Series 140, accessed 13/04/2024, at https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-mineral-and-material-commodities
  112. U.S. Geological Survey, 2014b, Gallium statistics. [In:] Kelly, T.D. and Matos, G.R., comps., Historical statistics for mineral and material commodities in the United States: U.S. Geological Survey Data Series 140, accessed 13/04/2024, at https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-mineral-and-material-commodities
  113. U.S. Geological Survey, 2014c, Germanium statistics, in Kelly, T.D., and Matos, G.R., comps., Historical statistics for mineral and material commodities in the United States: U.S. Geological Survey Data Series 140, accessed 13/04/2024, at https://www.usgs.gov/centers/national-minerals-information-center/historical-statistics-mineral-and-material-commodities
  114. U.S. Geological Survey, 2022, Mineral commodity summaries 2022: U.S. Geological Survey, 202 p., DOI:10.3133/mcs2022.
  115. Veronesi G, Moros M, Castillo-Michel H, Mattera, L., Onorato, G., Wegner, K.D., Ling, W.L., Reiss, P. & Tortiglione, C. (2019). In Vivo Biotransformations of Indium Phosphide Quantum Dots Revealed by X-Ray Microspectroscopy. ACS Applied Materials & Interfaces, 11(39), pp. 35630-35640. DOI: 10.1021/acsami.9b15433
  116. Virolainen, S., Huhtanen, T., Laitinen, A. & Sainio, T. (2020). Two alternative process routes for recovering pure indium from waste liquid crystal display panels. Journal of Cleaner Production, 243, 118599. DOI:10.1016/j.jclepro.2019.118599
  117. Wenzel, W.W., Kirchbaumer, N., Prohaska, T., Stingeder, G., Lombi, E., & Adriano, D.C. (2001). Arsenic fractionation in soils using an improved sequential extraction procedure. Analytica Chimica Acta, 436(2), pp. 309-323. DOI:10.1016/S0003-2670(01)00924-2
  118. Wernera, A., Riegera, A., Moscha, M. Haseneger, R. & Repke, J.U. (2018). Nanofiltration of indium and germanium ions in aqueous solutions: Influence of pH and charge on retention and membrane flux. Separation and Purification Technology, 194, pp. 319–328. DOI: 10.1016/j.seppur.2017.11.006
  119. White, S.J.O., & Hemond, H.F. (2012). The anthrobiogeochemical cycle of indium: a review of the natural and anthropogenic cycling of indium in the environment. Critical Reviews in Environmental Science and Technology, 42(2), pp. 155-186. DOI:10.1080/10643389.2010.498755
  120. Wiche, O., Székely, B., Moschner, C. & Heilmeier, H. (2018). Germanium in the soil-plant system—a review. Environmental Science and Pollution Research, 25, pp. 31938-31956. DOI:10.1007/s11356-018-3172-y
  121. Wiche, O., Zertani, V., Hentschel, W., Achtziger, R. & Midula, P. (2017). Germanium and rare earth elements in topsoil and soil-grown plants on different land use types in the mining area of Freiberg (Germany). Journal of Geochemical Exploration, 175, pp. 120-129. DOI:10.1016/j.gexplo.2017.01.008
  122. Willner, J., Fornalczyk, A., Jablonska-Czapla, M., Grygoyc, K. & Rachwal, M. (2021). Studies on the content of selected technology critical elements (germanium, tellurium and thallium) in electronic waste. Materials, 14(13), 3722. DOI:10.3390/ma14133722
  123. Wojcieszek, J., Szpunar, J. & Lobinski, R. (2018). Speciation of technologically critical elements in the environment using chromatography with element and molecule specific detection. TrAC Trends in Analytical Chemistry, 104, pp. 42-53. DOI:10.1016/j.trac.2017.09.018
  124. Wójcik, M., Gonnelli, C., Selvi, F., Dresler, S., Rostański, A. & Vangronsveld, J. (2016). Metallophytes of Serpentine and Calamine Soils – Their Unique Ecophysiology and Potential for Phytoremediation. Advances in Botanical Research, 83, pp. 1-42. DOI:10.1016/bs.abr.2016.12.002
  125. Wood, S. A., & Samson, I. M. (2005). The aqueous geochemistry of gallium, germanium, indium and scandium. Ore Geology Reviews, 28(1), pp. 57-102. DOI:10.1016/j.oregeorev.2003.06.002
  126. Yang J.L. & Chen L.H. (2018). Toxicity of antimony, gallium, and indium toward a teleost model and a native fifth species of semiconductor manufacturing districts of Taiwan. Journal of Elementology, 23(1), pp. 191-199. DOI: 10.5601/jelem.2017.22.3.1470
  127. Yang, G., Hadioui, M., Wang, Q. & Wilkinson K.J. (2019). Role of pH on indium bioaccumulation by Chlamydomonas reinhardtii. Environmental Pollution, 250, pp. 40-46. DOI: 10.1016/j.envpol.2019.03.116
  128. Yuan, W., Chen, J., Teng, H., Chetelat, B., Cai, H., Liu, J., Wang, Z., Bouchez, J., Moynier, F., Gaillardet, J., Schott, J. & Liu C. (2021). A review on the elemental and isotopic geochemistry of gallium. Global Biogeochemical Cycles, 35, e2021GB007033. DOI:10.1029/2021GB007033
  129. Yu, H.S. & Liao, W.T. (2011). Gallium: Environmental Pollution and Health Effects. [In:] Encyclopedia of Environmental Health, Nriagu J.O. (Ed.). Elsevier, pp. 829-833. DOI:10.1016/B978-0-444-52272-6.00474-8
  130. Yu, Y., Zhan, C., Li, Y., Zhou, D., Yu, J. & Yang, J. (2023). A comparison of metal distribution in surface soil between wetland and farmland in the Sanjiang plain. HydroResearch, 6, pp. 65-72. DOI:10.1016/j.hydres.2023.02.001
  131. Zhan, L., Wang, Z., Zhang, Y., & Xu, Z. (2020). Recycling of metals (Ga, In, As and Ag) from waste light-emitting diodes in sub/supercritical ethanol. Resources, Conservation and Recycling, 155, 104695. DOI:10.1016/j.resconrec.2020.104695
  132. Zheng, K., Benedetti, M.F., Jain, R., Pollmann, K. & Van Hullebusch, E.D. (2024). Recovery of gallium (and indium) from spent LEDs: Strong acids leaching versus selective leaching by siderophore desferrioxamine E. Separation and Purification Technology, 338, 126566. DOI:10.1016/j.seppur.2024.126566
  133. Zhou, J., Zhu, N., Liu, H., Wu, P., Zhang, X. & Zhong, Z. (2019). Recovery of gallium from waste light emitting diodes by oxalic acidic leaching. Resources, Conservation and Recycling, 146, pp. 366-372. DOI:10.1016/j.resconrec.2019.04.002
  134. Zoller, W.H., Gladney, E.S. & Duce, R.A. (1974). Atmospheric concentrations and sources of trace metals at the South Pole. Science, 183(4121), pp. 198-200. DOI:10.1126/science.183.4121.198
Go to article

Authors and Affiliations

George Yandem
1
ORCID: ORCID
Magdalena Jabłońska-Czapla
1
ORCID: ORCID

  1. Institute of Environmental Engineering Polish Academy of Science, Zabrze, Poland
Download PDF Download RIS Download Bibtex

Abstract

The Ramsar wetlands are crucial for global ecology. They are essential for preserving the balances of ecosystems. The aim of this work is to prevent the current situation of Sebkha of Soliman (880 ha; 36°43'N, 010°29'E; Nabeul, Tunisia) from deteriorating further. It is one of the few wetlands that receives water from both the sea, Wadi, and a wastewater treatment plant. According to a study of the organic pollution in the Sebkha's waters and sediments conducted in March 2022, there are high concentrations of suspended matter, that exceed 80 mg/L. The total organic matter exceeds 110 g/kg DW, and the biological oxygen demand exceeds 56 mg O2/L. Additionally, there are more than 24*103 bacteria per liter., We also identified mineral pollution primarily caused by nitrate (2.4 g/kg DW), phosphorus (2.42 g/kg DW), and iron (40 mg/L). Pollution is dispersed over three areas: the least polluted area is near the sea, the most polluted area is in the center of Sebkha, and the area farthest from the sea has medium pollution levels. The distribution of pollutants in the Sebkha is influenced by the contribution of pollutants and the self-purification by seawater.
Go to article

Bibliography

  1. Amari, M. & Azafzaf, H. )2001). Important Bird Areas in Africa and associated islands – Tunisia. http://datazone.birdlife.org/userfiles/file/IBAs/AfricaCntryPDFs/Tunisia.pdf
  2. Annotated List of Wetlands of International Importance. 1998. https://rsis.ramsar.org/sites/default/files/rsiswp_search/exports/Ramsar-Sites-annotated-summary-Tunisia.pdf?1576916235
  3. Brik,B., Shaiek,M., Trabelsi,L., Regaya,K., Mbarek,N.B., Béjaoui,B., Martins, M.V.A. & Zaaboub, N. (2022). Quality Status of Surface Sediments of Lake Ichkeul (NE Tunisia): an Environmental Protected Area and World Heritage Site. Water Air Soil Pollut. 233, 260. DOI:10.1007/s11270-022-05648-z
  4. Bunce, J.T., Ndam, E., Ofiteru, I.D., Moore, A. & Graham, D.W. (2018). A Review of Phosphorus Removal Technologies and Their Applicability to Small-Scale Domestic Wastewater Treatment Systems. Frontiers in Environmental Science, 6, pp. 1–15, DOI:10.3389/fenvs.2018.00008
  5. Chekirbane, A., Tsujimura, M., Lachaal, F., Khadhar, S., Mlayah, A., Kawachi, A. & Benalaya, A. (2016). Quantification of Groundwater - Saline Surface Water Interaction in a Small Coastal Plain in North-East Tunisia using Multivariate Statistical Analysis and Geophysical Method. Water Environment Research, 88, 12, pp. 2292–2308. DOI:10.2175/106143016x14609975746
  6. Coastal Protection and Development Agency (2002). Study of sanitation, valorization and development of the Sebkha of Soliman, Final Phase 1 Report: Diagnostic assessment and remediation scenarios Geoidd / Ceta / Betbel, pp. 84. https://rsis.ramsar.org/RISapp/files/29374310/documents/TN1713_lit1501.pdf
  7. El Hidri, D., Guesmi, A., Najjari, A., Cherif, H., Ettoumi, B., Hamdi, C. & Cherif, A. (2013). Cultivation-Dependant Assessment, Diversity, and Ecology of Haloalkaliphilic Bacteria in Arid Saline Systems of Southern Tunisia, BioMed Research International, pp. 1–15. DOI:10.1155/2013/648141
  8. Evans, M.I. & Fishpool, L.D.C. (2001). Important Bird Areas in Africa and associated Islands: Priority Sites for Conservation, Birdlife International, Pisces Publications, Cambridge, ISBN: 9781874357209.
  9. Directorate-General for Environment (2003). Horizontal guidance on the role of wetlands in the water framework directive, EU publications, Guidance document No 12.
  10. Fijałkowski K., Rosikoń K., Grobelak A. & Kacprzak M. (2011). Migration of various chemical compounds in soil solution during inducted phytoremediation, Archives of Environmental Protection, 37, 4 pp. 49 – 59.
  11. Gdara, I., Zrafi, I., Balducci, C., Cecinato, A. & Ghrabi, A. (2017). Seasonal Distribution, Source Identification, and Toxicological Risk Assessment of Polycyclic Aromatic Hydrocarbons (PAHs) in Sediments from Wadi El Bey Watershed in Tunisia, Archives of Environmental Contamination and Toxicology, 73, 3, pp. 488–510. DOI:10.1007/s00244-017-0440-7
  12. Gell, P.A., Finlayson, C.M. & Davidson, N.C. (2016). Understanding change in the ecological character of Ramsar wetlands: perspectives from a deeper time – synthesis, Marine and Freshwater Research, 67, 6, pp. 869. DOI:10.1071/mf16075
  13. Hails, A.J. (1997). Wetlands, Biodiversity and the Ramsar Convention. Ramsar Convention Bureau, Rue Mauverney 28, CH-1196 Gland, Switzerland. https://www.ramsar.org/sites/default/files/documents/library/wetlands_biodiversity_and_the_ramsar_convention.pdf
  14. Hammami, H., Baptista, P., Martins, F., Gomes, T., Abdelly, C. & Mahmoud, O.M.-B. (2016). Impact of a natural soil salinity gradient on fungal endophytes in wild barley (Hordeum maritimum With.), World Journal of Microbiology and Biotechnology, 32, 11, pp. 184. DOI:10.1007/s11274-016-2142-0
  15. Hidri, R, Mahmoud, OM, Zorrig, W, Mahmoudi, H, Smaoui, A, Abdelly, C, Azcon, R. & Debez, A. (2022). Plant Growth-Promoting Rhizobacteria Alleviate High Salinity Impact on the Halophyte Suaeda fruticosa by Modulating Antioxidant Defense and Soil Biological Activity, Frontiers in Plant Science, 13, pp. 821475. DOI:10.3389/fpls.2022.821475
  16. Hnativ, R, Cherniuk, V, Khirivskyi, P, Kachmar, N, Lopotych, N. & Hnativ, I. (2023). Processes of Natural Self-Cleaning of Small Watercourses with Increasing Anthropogenic Load in the Dniester River Basin, Journal of Ecological Engineering, 24, 2, pp. 12-18. DOI:10.12911/22998993/156914.
  17. Kaushalya G.N. (2020). Wetlands becoming wastelands; factors contributing to the degradation of wetlands in Srilanka, International Journal of Research and Analytical Reviews, 7(3), pp. 713-718. https://www.researchgate.net/publication/344165659
  18. Khadhar, S., Mlayah, A., Chekirben, A., Charef, A., Methammam, M., Nouha, S. & Khemais, Z. (2013). Vecteur de la pollution metallique du bassin versant de l’Wadi El Bey vers le Golfe de Tunis (Tunisie), Hydrological Sciences Journal, 58, 8, pp. 1803–1812. DOI:10.1080/02626667.2013.835487
  19. Khan, M.N., Mobin, M., Abbas, Z.K. & Alamri, S.A. (2018). Fertilizers and Their Contaminants in Soils, Surface and Groundwater. [In:] Dominick A. DellaSala, and Michael I. Goldstein (eds.) The Encyclopedia of the Anthropocene, 5, pp. 225-240. DOI:10.1016/B978-0-12-809665-9.09888-8
  20. Khouni, I., Louhichi, G. & Ghrabi, A. (2021). Use of GIS based Inverse Distance Weighted interpolation to assess surface water quality: Case of Wadi El Bey, Tunisia, Environmental Technology & Innovation, 24, pp. 101892. DOI:10.1016/j.eti.2021.101892
  21. Mažeikienė, A. & Šarko, J. (2023). Additional Treatment of Nitrogen and Phosphorus Using Natural Materials in Small-Scale Domestic Wastewater Treatment Unit, Water, 15, pp. 2607. DOI:10.3390/w15142607
  22. Mhamdi, F., Khouni, I. & Ghrabi, A. (2016). Diagnosis and characteristics of water quality along the Wadi El Bey river (Tunisia). Coagulation/flocculation essays of textile effluents discharged into the Wadi, Desalination and Water Treatment, 57(46), pp. 22166–22188. DOI:10.1080/19443994.2016.1147378
  23. Mili, S. (2016). Instant Cities on the Wet Coastal Zones-Tunisia, Procedia Environmental Sciences, 34, pp. 525–538. DOI:10.1016/j.proenv.2016.04.046
  24. Moloantoa, K.M., Khetsha, Z.P., van Heerden, E., Castillo, J.C. & Cason, E.D. (2022). Nitrate Water Contamination from Industrial Activities and Complete Denitrification as a Remediation Option, Water, 14, pp. 799, DOI:10.3390/w14050799
  25. National Census Reports East Atlantic Africa (2017). (https://www.waddensea-worldheritage.org/sites/default/files/2017_Flyway%20census%20report_0.pdf)
  26. Perumanath, S., Pillai, R. & Borg, M.K. (2023). Contaminant Removal from Nature's Self-Cleaning Surfaces, Nano Letter, 23, 10, pp. 4234-4241. DOI:10.1021/acs.nanolett.3c00257.
  27. Prudêncio, M.I., Gonzalez, M.I., Dias, M.I., Galan, E. & Ruiz, F. (2007). Geochemistry of sediments from El Melah lagoon (NE Tunisia): A contribution for the evaluation of anthropogenic inputs, Journal of Arid Environments, 69(2), pp. 285–298. DOI:10.1016/j.jaridenv.2006.10.006
  28. Prudêncio, M.I., Dias, M.I., Ruiz, F., Waerenborgh, J. C., Duplay, J., Marques, R. & Abad, M. (2010). Soils in the semi-arid area of the El Melah Lagoon (NE Tunisia) — Variability associated with a closing evolution. CATENA, 80(1), pp. 9–22. DOI:10.1016/j.catena.2009.08.006
  29. Ramsar Sites Information Service (2016). (https://rsis.ramsar.org/ris/1713).
  30. Ruiz, F., Abad, M., Galán, E., González, I., Aguilá, I., Olías, M. & Cantano, M. (2006). The present environmental scenario of El Melah Lagoon (NE Tunisia) and its evolution to a future sabkha, Journal of African Earth Sciences, 44(3), pp. 289–302. DOI:10.1016/j.jafrearsci.2005.11.023
  31. Singh, B. & Craswell, E. (2021). Fertilizers and nitrate pollution of surface and ground water: an increasingly pervasive global problem, SN Applied Sciences, 3, pp. 518. DOI:10.1007/s42452-021-04521-8
  32. Somerfield, P.J. & Warwick, R.M. (2013). Meiofauna Techniques. Methods for the Study of Marine Benthos, John Wiley & Sons, Ltd. Published 2013 by John Wiley & Sons, Ltd. pp. 253–284. DOI:10.1002/9781118542392.ch6
  33. Steinhoff-Wrześniewska A., Strzelczyk M., Helis M., Paszkiewicz-Jasińska A., Gruss Ł., Pulikowski K. & Skorulski W. (2022). Identification of catchment areas with nitrogen pollution risk for lowland river water quality, Archives of Environmental Protection, 48 , 2 pp. 53–64. DOI:10.24425/aep.2022.140766
  34. Sustain-COAST WP2. (2020). Sustainable coastal groundwater management and pollution reduction through innovative governance in a changing climate. https://www.sustain-coast.tuc.gr/fileadmin/users_data/project_sustain_coast/Sustain-COAST_D2.1__1_.pdf
  35. Tinarelli, R. (1987). Wintering biology of the Black-winged Stilt in the Maghreb region. Wader Study Group Bulletin, 50, pp. 30-34. https://sora.unm.edu/sites/default/files/journals/iwsgb/n050/p00030-p00034.pdf
  36. Tunisia’s Second National Communication Under The United Nations Framework Convention on Climate Change (UNFCCC). 2013. https://unfccc.int/sites/default/files/resource/tunnc2.pdf
  37. Xi, H. & Zhang, Y. (2011). Total suspended matter observation in the Pearl River estuary from in situ and MERIS data, Environmental Monitoring and Assessment, 177, pp. 563–574. DOI:10.1007/s10661-010-1657-3
  38. Zabłocki, S., Murat-Błażejewska, S., Trzeciak, J.A. & Błażejewski, R. (2022). High-resolution mapping to assess risk of groundwater pollution by nitrates from agricultural activities in Wielkopolska Province, Poland, Environmental Monitoring and Assessment, 48, 1, pp. 41–57. DOI:10.24425/aep.2022.140544
  39. Zarrouk, M., El Almi, H., Youssef, N. B., Sleimi, N., Smaoui, A., Miled, D. B. & Abdelly, C. (2003). Lipid composition of seeds of local halophytes: Cakile maritima, Zygophyllum album and Crithmum maritimum, Tasks for Vegetation Science, pp. 121–124. DOI:10.1007/978-94-017-0211-9_13
Go to article

Authors and Affiliations

Soumaya Elarbaoui
1
ORCID: ORCID
Moez Smiri
1
ORCID: ORCID

  1. Department of Biology, College of Science and Humanities - Dawadmi, Shaqra University, Saudi ArabiaUniversity of Carthage, Tunisia
Download PDF Download RIS Download Bibtex

Abstract

To investigate the effects and improvements of tightening vehicle emission standards from China Ⅲ to China Ⅴ on ozone (O3) and particulate matter (PM) pollution in the atmospheric environment, this study obtained emission factors of O3 and PM precursors such as nitrogen oxides (NOx), volatile organic compounds (VOCs), and primary PM from gasoline and diesel vehicles through actual testing. Response surface models (RSM) were then created for the environmental concentrations of the target pollutants O3 (RSM-O3_HSS6-200) and PM (RSMPM_HSS9-300) as functions of precursor pollutant emissions. Beijing was chosen as the main receptor region, with the China Ⅲ emission standard serving as the baseline scenario and the China Ⅳ and Ⅴ standards as control scenarios. The results indicate that as vehicle emission standards tightened from China Ⅲ to China Ⅳ and Ⅴ, O3 concentrations in Beijing's environment decreased from 92.7 ppbv to 78.47 ppbv and 72.20 ppbv, respectively, while PM concentrations decreased from 64.12 μg/m3 to 48.23 μg/m3 and 38.60 μg/m3, respectively. Furthermore, the environmetal benefits achieved from China Ⅲ to China Ⅳ were higher than those from China Ⅳ to China Ⅴ. Additionally, an analysis of pollutant source contributions revealed that NOx played a major role in reducing O3 concentrations, while primary PM was crucial in controlling PM pollution.
Go to article

Bibliography

  1. Aelion, C.M., Davis, H.T, Liu, Y., Lawson, A.B. & McDermott, S. (2009). Validation of Bayesian kriging of arsenic, chromium, lead, and mercury surface soil concentrations based on internode sampling. Environmental Science & Technology,43(12).
  2. Akimoto, H. & Tanimoto, H. (2022). Rethinking of the adverse effects of NOx-control on the reduction of methane and tropospheric ozone–Challenges toward a denitrified society. Atmospheric Environment, 277: 119033. DOI:10.1016/j.atmosenv.2022.119033
  3. BMEEB (2022). Beijing Ecology and Environment Statement 2021, http://sthjj.beijing.gov.cn/bjhrb/index/xxgk69/sthjlyzwg/1718880/1718881/1718882/325831146/2022122313533794930.pdf.
  4. Box, G.E.P. & Draper, N. (2007). Response Surfaces, Mixtures, and Ridge Analyses, Second Edition of Empirical Model-Building and Response Surfaces, 1987, Wiley.
  5. Brown, S.S., Ryerson, T.B., Wollny, A.G., Brock, C.A., Peltier, R., Sullivan, A.P., Weber, R.J., Dubé, W.P., Trainer, M., Meagher, J.F., Fehsenfeld, F.C. & Ravishankara, A.R. (2006). Variability in nocturnal nitrogen oxide processing and its role in regional air quality. Science, 311(5757), pp. 67-70. DOI:10.1126/science.1120120.
  6. Daellenbach, K.R., Uzu, G., Jiang J., Cassagnes, L.E., Leni, Z., Vlachou, A., Stefenelli, A., Canonaco, F., Weber, S., Segers., A., Kuenen, J.P.J., Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., Haddad, E. I., Jaffrezo, J.L & Prévôt, S.H.A. (2020). Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature, 587(7834), pp. 414-419. DOI:10.1038/s41586-020-2902-8.
  7. Dai H.B., Liao, H., Wang, Y. & Qian, J. (2024). Co-occurrence of ozone and PM2.5 pollution in urban/non-urban areas in eastern China from 2013 to 2020: Roles of meteorology and anthropogenic emissions. Science of The Total Environment, 924, 171687. DOI:10.1016/j.scitotenv.2024.171687.
  8. Deng, T., Huang, Y.Q., Li, Z.N., Wang, N., Wang, S.Q., Zou, Y., Yin, C.Q. & Fan. S.J. (2018). Numerical simulations for the sources apportionment and control strategies of PM 2.5 over Pearl River Delta, China, part II: Vertical distribution and emission reduction strategies. Science of the Total Environment, 634. DOI:10.1016/j.scitotenv.2018.04.209.
  9. Ding, W & Shuhua, L. (2023). Impact assessment of air pollutants and greenhouse gases on urban heat wave events in the Beijing-Tianjin-Hebei region. Environmental Geochemistry and Health, 45(11): pp. 7693-7709. DOI:10.1007/s10653-023-01677-7.
  10. Guha, A.K. & Gokhale, S. (2023). Urban workers' cardiovascular health due to exposure to traffic-originated PM2.5 and noise pollution in different microenvironments. Science of the Total Environment, 859, 160268. DOI:10.1016/j.scitotenv.2022.160268.
  11. Hammersley, J. (1960). Monte Carlo methods for solving multivariable problems. Proceedings of the New York Academy of Science, 86: pp. 844-874. DOI:10.1111/j.1749-6632.1960.tb42846.x.
  12. Jia, X., Wang, S.X., Jang, C., Zhu, Y., Zhao, B., Ding, D., Wang, J.D., Zhao, L.J., Xie, H.X. & Hao, J.M. (2017). ABaCAS: an overview of the air pollution control cost-benefit and attainment assessment system and its application in China. The Magazine for Environmental Managers–Air & Waste Management Association, (April). https://www.abacas-dss.com/Files/paper/ABaCAS_EM_April_2017_xing.pdf.
  13. Kumar, P.G., Lekhana, P., Tejaswi, M. & Chandrakala, S. (2021). Effects of vehicular emissions on the urban environment-a state of the art. Materials Today: Proceedings, 45: pp. 6314-6320. DOI: 10.1016/j.matpr.2020.10.739.
  14. Lao, Y. W., Zhu, Y., Jang, C., Lin, C. J., Xing, J.,Chen, Z. R., Xie, J. P., Wang, S. X. & Fu, J. (2012). Research and development of auxiliary decision tools for regional air pollution control based on response surface mode. Journal of Environmental Sciences, 32(08), pp. 1913-1922. DOI:10.13671/j.hjkxxb.2012.08.019. (In Chinese)
  15. Latha, R., Shahana, B., Dolly, M., Rupal, A., Trina, M., Priyadarshi, M. & Murthy, B.S. (2023). On the transition of major pollutant and O3 production regime during Covid-19 lockdowns. Journal of Environmental Management, 328, 116907. DOI:10.1016/j.jenvman.2022.116907.
  16. Liu, C. & Shi, K. (2021). A review on methodology in O3-NOx-VOC sensitivity study. Environmental Pollution, 291, 118249. DOI:10.1016/j.envpol.2021.118249.
  17. Liu, F., Zhu, Y. & Zhao, Y. (2008). Contribution of motor vehicle emissions to surface ozone in urban areas: A case study in Beijing. The International Journal of Sustainable Development & World Ecology, 15(4), pp. 345-349. DOI:10.3843/SusDev.15.4:9.
  18. Lv, Z.F., Wang, X.T., Deng, F.Y., Ying, Q., Archibald, T.A., Jones, J.R., Ding, Y., Cheng, Y., Fu, M.L., Liu, Y., Man, H.Y., Xue, Z.G., He, K.B., Hao, J.M. & Liu, H. (2020). Source–receptor relationship revealed by the halted traffic and aggravated haze in Beijing during the COVID-19 lockdown. Environmental science & technology, 54(24), pp, 15660-15670. DOI:10.1021/acs.est.0c04941.
  19. Lyu, M., Bao, X.F., Zhu, R.C. & Matthews, R. (2020). State-of-the-art outlook for light-duty vehicle emission control standards and technologies in China. Clean Technologies and Environmental Policy, 22(4), pp. 757-771. DOI:10.1007/s10098-020-01834-x.
  20. Ministry of Ecology and Environment of the People’s Republic of China (MEE). (2022) https://www.mee.gov.cn. Last access: 20 August 2022.
  21. Ministry of Ecology and Environment of the People’s Republic of China (MEE). (2023) https://www.mee.gov.cn. Last access: 1 August 2023.
  22. Nguyen, K. & Dabdub, D. (2022). NOx and VOC control and its effects on the formation of aerosols. Aerosol Science & Technology, 36(5), pp. 560-572. DOI:10.1080/02786820252883801.
  23. Pan, Y. Z. (2020). Improvement and application of PM2.5 source contribution analysis Method based on Response Surface model technique. South China University of Technology, DOI:10.27151/d.cnki.ghnlu.2020.002204. (in Chinese)
  24. The People's Government of Beijing Municipality (PGBM). (2021) http://www.beijing.gov.cn. Last access: 1 August 2021.
  25. Wang, Y.H., Gao, W.K., Wang, S., Song, T., Gong, Z.Y., Ji, D.S., Wang L.L., Liu, Z.R.,Tang, G.Q., Huo, Y.F., Tian, S.L., Li, J.Y., Li, M.G., Yang,Y., Chu, B.W., Petaja, T., Kerminen, V.M., He, H., Hao, J.M., Kulmala, M., Wang, Y.S. & Zhang, Y.H. (2020). Contrasting trends of PM2.5 and surface-ozone concentrations in China from 2013 to 2017. National Science Review, 7(8), pp. 1331-1339. DOI:10.1093/nsr/nwaa032.
  26. Wu, T.R., Cui, Y.Y., Lian, A.P., Tian, Y., Li, R.F., Liu, X.Y., Jing, Y., Xue, Y.F., Liu, H. & Wu, B.B. (2023). Vehicle emissions of primary air pollutants from 2009 to 2019 and projection for the 14th Five-Year Plan period in Beijing, China. Journal of Environmental Sciences, 124(02), pp. 513-521. DOI:10.1016/j.jes.2021.11.038.
  27. Xing, J. (2011). Study on non-linear response relationship between air pollution emissions and environmental effects. Tsinghua University, https://kns.cnki.net/kcms2/article/abstract?v=4wkQyjAcIEdPh2Yz1dvthqvcfOngyxm32aJgNvaSA4efiNy_bMJJ4XlzsbKsiQczmoIqt74U_xNLfCgwd3hxR2AIh1OI7XMyf76pbtSLWw1Dubs4VmUGJvvJ6fLOGwKrwODdmuqlysGVyPacwW_Mt7j_RMJXR2h75EvN8sWktx0_lBW-P2WMKiacY0eic2ET&uniplatform=NZKPT&language=CHS. (In Chinese)
  28. Xu, J., Xu, X.B., Lin, W.L., Ma, Z.Q., Ma, J.Z., Wang, R., Wang, Y., Zhang, G. & Xu, W.Y. (2020). Understanding the formation of high-ozone episodes at Raoyang, a rural site in the north China plain. Atmospheric Environment, 240, 117797. DOI:10.1016/j.atmosenv.2020.117797.
  29. Xue, X.H. (2020). A brief discussion on the harm of photochemical smog and its control countermeasures. Sichuan Environment, (04), pp. 75-76+60. DOI:10.14034/j.cnki.schj.2000.04.025. (In Chinese)
  30. Zhang, Q.J., Liu, J.Y., Wei, N., Song, C.B., Peng, J.F., Wu, L. & Mao, H.J. (2023). Identify the contribution of vehicle non-exhaust emissions: a single particle aerosol mass spectrometer test case at typical road environment. Frontiers of Environmental Science & Engineering, 17(5), 62. DOI:10.1007/s11783-023-1662-8.
  31. Zhao, B., Wang, S.X., Dong, X.Y., Wang, J.D., Duan, L., Fu, X., Hao, J.M. & Fu, J.S. (2013a). Environmental effects of the recent emission changes in China: implications for particulate matter pollution and soil acidification. Environmental Research Letters, 8(2), 024031. DOI:10.1088/1748-9326/8/2/024031.
  32. Zhao, B., Wang, S.X, Wang, J.D., Fu, S.J., Liu, T.H., Hua, J.Y., Fu, X. & Hao, J.M. (2013b). Impact of national NOx and SO2 control policies on particulate matter pollution in China. Atmospheric Environment, 77, pp. 453-463. DOI:10.1016/j.atmosenv.2013.05.012.
Go to article

Authors and Affiliations

Chang Wang
1
Xiaohan Miao
1
Maodong Fang
2
Yuan Chen
1
Taosheng Jin
1

  1. Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
  2. National Engineering Laboratory for Mobile Source Emission Control Technology, China Automotive Technology and Research Center Co., Ltd., Tianjin 300300, China
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effectiveness of sequentially applying coagulation and adsorption processes in treating soft drink industry wastewater was assessed based on COD removal. In the electrocoagulation method with iron electrodes, the highest COD removal occurred at 42%, achieved with a current of 9A and the natural pH of the wastewater at 5.51. In chemical coagulation, using FeCl3•6H2O as a coagulant, the highest removal rate of 23% was achieved at pH 5 with a coagulant dose of 2.5g/L. Activated carbon adsorption, in doses ranging from 10 to 40g/L, was applied to the effluents of both electrocoagulation and chemical coagulation at various contact times, up to 150 minutes, resulting in COD removal rates of 42% and 36%, respectively. According to the results, the COD removal efficiencies for the electrocoagulation-adsorption and chemical coagulation-adsorption systems were 66% and 51%, respectively. The findings of this study are important because they demonstrate the necessity of research on the use and development of physicochemical methods for the treatment of soft drink industry wastewater.
Go to article

Bibliography

  1. Can, O.T. (2014). COD removal from fruit-juice production wastewater by electrooxidation electrocoagulation and electro-Fenton processes, Desalination and Water Treatment, 52, pp. 65-73. DOI:10.1080/19443994.2013.781545
  2. Casillas, H.A.M., Cocke, D.L., Gomes, J.A.G., Morkovsky, P., Parga, J.R. & Peterson, E. (2007). Electrocoagulation mechanism for COD removal, Separation and Purification Technology, 56, pp. 204-211. DOI:10.1016/j.seppur.2007.01.031
  3. Chang, S.H., Wang, K.S., Liang, H.H., Chen, H.Y., Li, H.C., Peng, T.H., Su, Y.C. & Chang, C.Y. (2010). Treatment of Reactive Black 5 by combined electrocoagulation-granular activated carbon adsorption-microwave regeneration process, Journal of Hazardou Materials, 175, pp. 850-857. DOI:10.1016/j.hazmat.2009.10.088
  4. Das, P.P., Sharma, M. & Purkait, M.K. (2022). Recent progress on electrocoagulation process for wastewater treatment: A review. Separation and Purification Technology, 292, 121058. DOI:10.1016/j.seppur.2022.121058
  5. Dia, O., Drogui, P., Bueldo, G. & Dube, R. (2018). Hybrid process, electrocoagulation-biofiltration for landfill leachate treatment, Waste Management, 75, pp. 391-399. DOI:10.1016/j.wasman.2018.02.016
  6. Ebeling, J.M., Sibrell, P.L., Ogden, S.R. & Summerfelt, S.T. (2003). Evaluation of chemical coagulation-flocculation aids for the removal suspended solids and phosphorus from intensive recirculating aquaculture effluents discharge, Aquaculture Engineering, 29, pp. 23-42. DOI:10.1016/S0144-8609(03)00029-3
  7. El-Naas, M.H., Al-Zuhair, S. & Alhaija, M.A. (2010). Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon, Journal of Hazardou Materials, 173, pp. 750-757. DOI:10.1016/j.hazmat.2009.09.002
  8. GilPavas, E. & Correa-Sanchez, S. (2020). Assessment of the optimized treatment of indigo-polluted industrial textile wastewater by a sequential electrocoagulation-activated carbon adsorption process, Journal of Water Process Engineering, 36, 101306. DOI:10.1016/j.jwpe.2020.101306
  9. Heidman, I. & Calmano, W. (2008). Removal of Cr (VI) from model wastewaters by electrocoagulation with Fe electrodes, Separation and Purification Technology, 61, pp. 15-21. DOI:10.1016/j.seppur.2007.09.011
  10. Hernandez, I.L., Diaz, C.B., Cerecero, M.V., Sanchez, P.T.A., Juarez, M.C. & Lugo, V.L. (2017). Soft drink wastewater treatment by electrocoagulatin-electrooxidation processes, Environmental Technology, 38, 4, pp. 433-442. DOI:10.1080/09593330.2016.1196740
  11. Hsine, E.A., Benhammou, A. & and Pons, M.N. (2005). Water resources management in soft drink industry-water use and wastewater generation, Environmental Technology, 26, pp. 1309-1316. DOI:10.1080/09593332608618605
  12. Hu, R., Liu, Y., Zhu, G., Chen, C., Hantoko, D. & Yan, M. (2022). COD removal of wastewater from hydrothermal carbonization of food waste: Using coagulation combined activated carbon adsorption, Journal of Water Process Engineering, 45, 102462. DOI:10.1016/j.wpe.2021.102462
  13. Inan, H., Dimoglo, A., Şimşek, H. & Karpuzcu, M. (2004). Olive oil mill wastewater treatment by means of electro-coagulation, Separation and Purification Technology, 36, pp. 23-31.
  14. Ishak, A.R., Hamid, F.S., Mohamad, S. & Tay, K.S. (2018). Stabilized landfill leachate treatment by coagulation-floculation coupled with UV-based sulfate radical oxidation process, Waste Management, 76, pp. 575-581. DOI:10.1016/j.wasman.2018.02.047
  15. Kasmi, M., Chatti, A., Hamdi, M. & Trabelsi, I. (2016). Eco-friendly process for soft drink industries wastewater reuse as growth medium for Saccharomyces cerevisiae production, Clean Technologies Environmental Policy, 18, pp. 2265-2278. DOI:10.1007/s 10098-016-1144-9
  16. Kong, X., Zhou, Y., Xu, T., Hu, B., Lei, X., Chen, H. & Yu, G. (2020). A novel technique of COD removal from electroplating wastewater by Fenton-alternating current electrocoagulation, Environmental Science and Pollution Research, 27, pp. 15198-15210. DOI:10.1007/s11356-020-07804-6
  17. Kuśmierek, K., Dąbek, D. & Świątkowski, A. (2023). Removal of direct orange 26 azo dye from water using natural carbonaceous materials, Archives of Environmental Protection, 49, 1, pp. 47-56. DOI:10.24425/aep.2023.144736.
  18. Modirshahla, N., Behnajady, M.A.& Kooshaiian, S. (2007). Investigation of the effect of different electrode connections on the removal efficiency of Tartrazine from aqueous solutions by electrocoagulation, Dyes and Pigments, 74, pp. 249-257. DOI:10.1016/j.dyepig.2006.02.006
  19. Ofir, E., Oren, Y. & Adin, A. (2007). Modified equilibrium-solubility domains and a kinetic model of iron oxide and hydroxide colloids for electroflocculation, Desalination, 204, pp. 79-86, 820079. DOI:10.1016/j.desal.2006.03.535
  20. Öztürk, T. & Özcan, Ö.F. (2021). Effectiveness of electrocoagulation and chemical coagulation methods on paper industry wastewater and optimum operating parameters, Separation Science and Technology, 56, 12, pp. 2074-2086. DOI:10.1080/01496395.2020.1805465
  21. Remya, N., & Swain, A. (2019). Soft drink industry wastewater treatment in microwave photocatalytic system - Exploration of removal efficiency and degradation mechanism, Separation and Purification Technology, 210, pp. 600-607. DOI:10.1016/j.seppur.2018.08.051
  22. Salinas, R.E.V., Miranda, V.M., Hernandez, I.L., Mejia, G.V., Juarez, M.C. & Sanchez, P.T.A. (2019). Pre-treatment of soft drink wastewater with a calcium-modified zeolite to improve electrooxidation of organic matter, Journal of Environmental Science and Health, Part A, 54, 7, pp. 617-627. DOI:10.1080/10934529.2019.1579522
  23. Shak, K.P.Y. & Wu, T.Y. (2014). Coagulation-flocculation treatment of high-strength agro-industrial wastewater using natural Cassia obtusifolia seed gum: Treatment efficiencies and floc characterization, Chemical Engineering Journal, 256, pp. 293-305. DOI:10.1016/j.cej.2014.06.093
  24. Sheldon, M.S. & Erdogan, I.G. (2016). Multi-stage EGSB/MBR treatment of soft drink industry wastewater, Chemical Engineering Journal, 285, pp. 368-377. DOI:10.1016/j.cej.2015.10.021
  25. Sincero, A.P. & Sincero, G.A. (2003). Physical-Chemical Treatment of Water and Wastewater, IWA Publishing-CRC Press, Washington 2003.
  26. Standard Methods, (1995). Standard Methods for the Examination of Water and Wastewater, American Public Health Association, Washington, USA 1995.
  27. Tsioptsias, C., Petridis, D., Athanasakis, N., Lemonidis, I., Deligiannis, A. & Samaras, P. (2015). Post-treatment of molasses wastewater by electrocoagulation and process optimization through response surface analysis, Journal of Environmental Management, 164, pp. 104-113. DOI:10.1016/j.envman.2015.09.007
  28. Water Pollution Control Regulation (2004). Republic Ministry of Environment, Urbanization and Climate Change, Water Pollution Control Regulation, Official Journal No:25687.
  29. Zablocka, J.B., Capodaglio, A.G. & Vogel, D. (2017). Analysis of wastewater treatment efficiency in a soft drinks industry, International Conference Energy, Environmental and Material Systems, EEMS, Polanica-Zdroj, Poland, Sep. 13-15. DOI:10.1051/e3sconf/20171902014
  30. Zongo, I., Leclerc, J.P., Maiga, H.A., Wethe, J. & Lapicque, F. (2009). Removal of hexavalent chromium from industrial wastewater by electrocoagulation: A comprehensive comparison of aluminium and iron electrodes, Separation and Purification Technology, 66, pp. 159-166. DOI:10.1016/j.seppur.2008.11.012
Go to article

Authors and Affiliations

Ece Sever
1
Tuba Öztürk
1
Elçin Güneş
1

  1. Tekirdağ Namık Kemal University, Turkey

Instructions for authors

Archives of Environmental Protection
Instructions for Authors

Archives of Environmental Protection is a quarterly published jointly by the Institute of Environmental Engineering of the Polish Academy of Sciences and the Committee of Environmental Engineering of the Polish Academy of Sciences. Thanks to the cooperation with outstanding scientists from all over the world we are able to provide our readers with carefully selected, most interesting and most valuable texts, presenting the latest state of research in the field of engineering and environmental protection.

Scope
The Journal principally accepts for publication original research papers covering such topics as:
– Air quality, air pollution prevention and treatment;
– Wastewater treatment and utilization;
– Waste management;
– Hydrology and water quality, water treatment;
– Soil protection and remediation;
– Transformations and transport of organic/inorganic pollutants in the environment;
– Measurement techniques used in environmental engineering and monitoring;
– Other topics directly related to environmental engineering and environment protection.

The Journal accepts also authoritative and critical reviews of the current state of knowledge in the topic directly relating to the environment protection.

If unsure whether the article is within the scope of the Journal, please send an abstract via e-mail to: aep@ipispan.edu.pl

Preparation of the manuscript
The following are the requirements for manuscripts submitted for publication:
• The manuscript (with illustrations, tables, abstract and references) should not exceed 20 pages. In case the manuscript exceeds the required number of pages, we suggest contacting the Editor.
• The manuscript should be written in good English.
• The manuscript ought to be submitted in doc or docx format in three files:
– text.doc – file containing the entire text, without title, keywords, authors names and affiliations, and without tables and figures;
– figures.doc – file containing illustrations with legends;
– tables.doc – file containing tables with legends;
• The text should be prepared in A4 format, 2.5 cm margins, 1.5 spaced, preferably using Time New Roman font, 12 point. Thetext should be divided into sections and subsections according to general rules of manuscript editing. The proposed place of tables and figures insertion should be marked in the text.
• Legends in the figures should be concise and legible, using a proper font size so as to maintain their legibility after decreasing the font size. Please avoid using descriptions in figures, these should be used in legends or in the text of the article. Figures should be placed without the box. Legends should be placed under the figure and also without box.
• Tables should always be divided into columns. When there are many results presented in the table it should also be divided into lines.
• References should be cited in the text of an article by providing the name and publication year in brackets, e.g. (Nowak 2019). When a cited paper has two authors, both surnames connected with the word “and” should be provided, e.g. (Nowak and Kowalski 2019). When a cited paper has more than two author, surname of its first author, abbreviation ‘et al.’ and publication year should be provided, e.g. (Kowalski et al. 2019). When there are more than two publications cited in one place they should be divided with a coma, e.g. (Kowalski et al. 2019, Nowak 2019, Nowak and Kowalski 2019). Internet sources should be cited like other texts – providing the name and publication year in brackets.
• The Authors should avoid extensive citations. The number of literature references must not exceed 30 including a maximum of 6 own papers. Only in review articles the number of literature references can exceed 30.
• References should be listed at the end of the article ordered alphabetically by surname of the first author. References should be made according to the following rules:

1. Journal:
Surnames and initials. (publication year). Title of the article, Journal Name, volume, number, pages, DOI.
For example:

Nowak, S.W., Smith, A.J. & Taylor, K.T. (2019). Title of the article, Archives of Environmental Protection, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330

If the article has been assigned DOI, it should be provided and linked with the website on which it is made available.

2. Book:
Surnames and initials. (publication year). Title, Publisher, Place and publishing year.
For example:

Kraszewski, J. & Kinecki, K. (2019). Title of book, Work & Studies, Zabrze 2019.

3. Edited book:

Surnames and initials of text authors. (publishing year). Title of cited chapter, in: Title of the book, Surnames and
initials of editor(s). (Ed.)/(Eds.). Publisher, Place, pages.
For example:

Reynor, J. & Taylor, K.T. (2019). Title of chapter, in: Title of the cited book, Kaźmierski, I. & Jasiński, C. (Eds.). Work & Studies, Zabrze, pp. 145–189.

4. Internet sources:
Surnames and initials or the name of the institution which published the text. (publication year). Title, (website address (accessed on)).
For example:

Kowalski, M. (2018). Title, (http://www.krakow.pios.gov.pl/publikacje/2009/ (03.12.2018)).

5. Patents:

Orszulik, E. (2009). Palenisko fluidalne, Patent polski: nr PL20070383311 20070910 z 16 marca 2009.
Smith, I.M. (1988). U.S. Patent No. 123,445. Washington, D.C.: U.S. Patent and Trademark Office.

6. Materials published in language other than English:
Titles of cited materials should be translated into English. Information of the language the materials were published in should be provided at the end.
For example:

Nowak, S.W. & Taylor, K.T. (2019). Title of article, Journal Name, 10, 2, pp. 93–98. DOI: 10.24425/aep.2019.126330. (in Polish)

Not more than 30 references should be cited in the original research paper.


Submission of the manuscript
By submitting the manuscript Author(s) warrant(s) that the article has not been previously published and is not under consideration by another journal. Authors claim responsibility and liability for the submitted article.
The article is freely available and distributed under the terms of Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution and reproduction in any medium provided the article is properly cited.


© 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International Public License (CC BY SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/legalcode), which permits use, distribution, and reproduction in any medium, provided that the article is properly cited.


The manuscripts should be submitted on-line using the Editorial System available at http://www.editorialsystem.com/aep.

Review Process
All the submitted articles are assessed by the Editorial Board. If positively assessed by at least two editors, Editor in Chief, along with department editors selects two independent reviewers from recognized authorities in the discipline.
Review process usually lasts from 1 to 4 months.
Reviewers have access to PUBLONS platform which integrates into Bentus Editorial System and enables adding reviews to their personal profile.
After completion of the review process Authors are informed of the results and – if both reviews are positive – asked to correct the text according to reviewers’ comments. Next, the revised work is verified by the editorial staff for factual and editorial content.

Acceptance of the manuscript

The manuscript is accepted for publication on grounds of the opinions of independent reviewers and approval of Editorial Board. Authors are informed about the decision and also asked to pay processing charges and to send completed declaration of the transfer of copyright to the editorial office.

Proofreading and Author Correction
All articles published in the Archives of Environmental Protection go through professional proofreading process. If there are too many language errors that prevent understanding of the text, the article is sent back to Authors with a request to correct the indicated fragments or – in extreme cases – to re-translate the text.
After proofreading the manuscript is prepared for publishing. The final stage of the publishing process is Author correction. Authors receive a page proof copy of the article with a request to make final corrections.

Article publication charges


The publication fee in the Journal of an article up to 20 pages is 520 EUR/2500 zł

Payments in Polish zlotys
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001

Payments in Euros
Bank BGK
Account no.: 20 1130 1091 0003 9111 7820 0001
IBAN: PL 20 1130 1091 0003 9111 7820 0001
SWIFT: GOSKPLPW

Authors are kindly requested to inform the editorial office of making payment for the publication, as well as to send all necessary data for issuing an invoice
 

Peer-review Procedure

The reviewing procedure for papers published in Archives of Environmental Protection

1) After accepting the paper as matching to the scope of the Journal Editor-in-Chief with Section Editors choose two independent Reviewers (authorities in the domain/discipline). The chosen Reviewers (from professors and senior academic staff members) have to guarantee:

  • autonomous opinion,
  • the lack of interests conflict – especially the lack of personal and business relations with the Authors of the paper,
  • the preservation of confidentiality about the paper content and the Reviewer opinion about the paper.

2) After the Reviewers selection, Assistant Editor send them (via e-mail) requests to review the paper. Reviewers receive the full text of the paper (without Author personal data) qualified for the reviewing process and referee form, sometimes supplemented with the additional questions connected with the article. In the e-mail Assistant Editor also determine the extent of the review and the deadline (usually a month).

3) The personal data of Reviewers are not open (double-blind review). It can be declassify only on Author’s special request and after the Reviewer agreement. It sometimes happen when the review outcome is: manuscript rejection or when the paper contain controversial issues.

4) The reviewer send the review to the Editorial Office via e-mail. After receiving the review the Assistant Editor:

  • inform Authors about it (in the case of the review without corrections or when there are only small, editorial changes needed),
  • send the reviews to Authors. Authors have to correct the paper according to Reviewers comment and prepare the reply to Reviewers,
  • send the paper corrected by Authors to Reviewers again – when Reviewer wanted to review it again.

5) The final decision about manuscript is made by the Editorial Board on the basis of the analysis of remarks contained in the review and the final version of the paper send by Authors. 6) The final version of the paper, after typesetting and text makeup is being sent to Authors, who make an author’s corrections. Afterwards the paper is ready to be printed in the specific issue.

Reviewers

All Reviewers in 2022

Alonso Rosa (University of the Basque Country/EHU, Bilbao, Spain), Alwaeli Mohamed (Silesian University of Technology), Arora Amarpreet (Sherpa Space Inc., Republic of Korea), Babu A.( Yeungnam University, Gyeongsan, Republic of Korea), Barbieri Maurizio (Sapienza University of Rome), Bień Jurand (Wydział Infrastruktury i Środowiska, Politechnika Częstochowska), Bogacki Jan (Wydział Instalacji Budowlanych, Hydrotechniki i Inżynierii Środowiska, Politechnika Warszawska), Bogumiła Pawluśkiewicz (Katedra Kształtowania Środowiska, SGGW), Boutammine Hichem (Laboratory of Industrial Process Engineering and Environment, Faculty of Process Engineering, University of Science and Technology, Bab-Ezzouar, Algiers, Algeria), Burszta-Adamiak Ewa (Uniwersytet Przyrodniczy we Wrocławiu), Cassidy Daniel (Western Michigan University, United States), Chowaniec Józef (Polish Geological Institute - National Research Institute), Czerniawski Robert (Instytut Biologii, Uniwersytet Szczeciński), da Silva Elaine (Fluminense Federal University, UFF, Brazil), Dąbek Lidia (Wydział Inżynierii Środowiska, Geodezji i Energetyki Odnawialnej, Politechnika Świętokrzyska), Dannowski Ralf (Leibniz-Zentrum für Agrarlandschaftsforschung: Müncheberg, Brandenburg, DE), Delgado-González Cristián Raziel (Universidad Autónoma del Estado de Hidalgo, Tulancingo , Mexico), Dewil Raf (KU Leuven, Belgium), Djemli Samir (University Badji Mokhtar Annaba, Algeria), Du Rui (University of Chinese Academy of Sciences, China), Egorin AM (Institute of Chemistry FEBRAS, Russia), Fadillah‬ ‪Ganjar‬‬ (Universitas Islam Indonesia, Indonesia), Gangadharan Praveena (Indian Institute of Technology Palakkad, India), Garg Manoj (Amity University, Noida, India), Gębicki Jacek (Politechnika Gdańska, Poland), Generowicz Agnieszka (Politechnika Krakowska, Poland), Gnida Anna (Silesian University of Technology, Poland), Golovatyi Sergey (Belarusian State University, Belarus), Grabda Mariusz (General Tadeusz Kosciuszko Military Academy of Land Forces, Poland), Guo Xuetao (Northwest A&F University, China), Gusiatin Mariusz (Uniwersytet Warminsko-Mazurski, Polska), Han Lujia (Instytut Badań Systemowych PAN, Polska), Holnicki Piotr (Systems Research Institute of the Polish Academy of Sciences, Poland), Houali Karim (University Mouloud MAMMERI, Tizi-Ouzou , Algeria), Iwanek Małgorzata (Lublin University of Technology, Poland), Janczukowicz Wojciech (University of Warmia and Mazury in Olsztyn, Poland), Jan-Roblero J. (Instituto Politécnico Nacional,Prol.de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, Mexico), Jarosz-Krzemińska Elżbieta (AGH, Wydział Geologii, Geofizyki i Ochrony Środowiska, Katedra Ochrony Środowiska), Jaspal Dipika (Symbiosis Institute of Technology (SIT), Symbiosis International (Deemed University), (SIU), Jorge Dominguez (Universidade de Vigo, Spain), Kabała Cezary (Wroclaw University of Environmental and Life Sciences, Poland), Kalka Joanna (Silesian University of Technology, Poland), Karaouzas Ioannis (Hellenic Centre for Marine Research, Greece), Khadim Hussein (University of Baghdad, Iraq), Khan Moonis Ali (King Saud University, Saudi Arabia), Kojić Ivan (University of Belgrade, Serbia), Kongolo Kitala Pierre (University of Lubumbashi, Congo), Kozłowski Kamil (Uniwersytet Przyrodniczy w Poznaniu, Poland), Kucharski Mariusz (IUNG Puławy, Poland), Lu Fan (Tongji University, China), Łukaszewski Zenon (Politechnika Poznańska; Wydział Technologii Chemicznej), Majumdar Pradeep (Addis Ababa Sciennce and Technology University, Ethiopia), Mannheim Viktoria (University of Miskolc, Hungary), Markowska-Szczupak Agata (Zachodniopomorski Uniwersytet Technologiczny w Szczecinie; Wydział Technologii i Inżynierii Chemicznej), Mehmood Andleeb (Shenzhen University, China), Mol Marcos (Fundação Ezequiel Dias, Brazil), Mrowiec Bożena (Akademia Techniczno-Humanistyczna w Bielsku-Białej, Poland), Nałęcz-Jawecki Grzegorz (Zakład Toksykologii i Bromatologii, Wydział Farmaceutyczny, WUM), Ochowiak Marek (Politechnika Poznańska, Poland), Ogbaga Chukwuma (Nile University of Nigeria, Nigeria), Oleniacz Robert (AGH University of Science and Technology in Krakow, Poland), Pan Ligong (Northeast Forestry University, China) Paruch Adam (Norwegian Institute of Bioeconomy Research, Norway), Pietras Dariusz (ATH Bielsko-Biała, Poland), Piotrowska-Seget Zofia (Uniwersytet Ślaski, Polska), Płaza Grażyna (IETU Katowice, Poland), Pohl Alina (IPIS PAN Zabrze, Poland), Poikane Sandra (European Commission, Joint Research Centre (JRC), Ispra, Italy), Poluszyńska Joanna (Łukasiewicz Research Network - Institute of Ceramics and Building Materials, Poland), Dudzińska Marzenna (Katedra Jakości Powietrza Wewnętrznego i Zewnętrznego, Politechnika Lubelska), Rawtani Deepak (National Forensic Sciences University, Gandhinagar, India) Rehman Khalil (GC Women University Sialkot, Pakistan), Rogowska Weronika (Bialystok University of Technology, Poland), Rzeszutek Mateusz (AGH, Wydział Geodezji Górniczej i Inżynierii Środowiska, Katedra Kształtowania i Ochrony Środowiska), Saenboonruang Kiadtisak (Faculty of Science, Kasetsart University, Bangkok), Sebakhy Khaled (University of Groningen, Netherlands), Sengupta D.K. (Regional Research Laboratory, Bhubaneswar. India), Shao Jing (Anhui University of Traditional Chinese Medicine, Chile), Sočo Eleonora (Rzeszów University of Technology, Poland), Sojka Mariusz (Poznan University of Life Sciences, Poland), Sonesten Lars (Swedish University of Agricultural Sciences, Sweden), Song Wencheng (Anhui Province Key Laboratory of Medical Physics and Technology, Chinese), Song ZhongXian (Henan University of Urban Construction, China), Spiak Zofia (Uniwersyet Przyrodniczy we Wrocławiu, Poland), Srivastav Arun (Chitkara University, Himachal Pradesh, India), Steliga Teresa (Instytut Nafty i Gazu -Państwowy Instytut Badawczy, Poland), Surmacz-Górska Joanna (Silesian University of Technology, Poland), Świątkowski Andrzej (Wojskowa Akademia Techniczna, Poland), Symanowicz Barbara (Siedlce University of Natural Sciences and Humanities, Poland), Szklarek Sebastian (European Regional Centre for Ecohydrology, Polish Academy of Sciences), Tabina Amtul (GC University,Lahore, Pakistan), Tang Lin (Hunan University, China), Torrent Sergi (Innovación, Aigües de Manresa, S.A, Manresa, Spain, Spain), Trafiałek Joanna (Warsaw University of Life Sciences, Poland), Vijay U. (Department of Microb, Jaipur, India, India), Vojtkova Hana (University of Ostrava, Czech Republic), Wang Qi (City University of Hong Kong, Hong Kong), Wielgosiński Grzegorz (Wydziału Inżynierii Procesowej i Ochrony Środowiska, Politechnika Łódzka), Wilk Pawel (IMGW-PIB, Poland), Wiśniewska Marta (Warsaw University of Technology, Poland), Yin Xianqiang (Northwest A&F University, Yangling China), Zając Grzegorz (University Of Life Sciences in Lublin, Poland), Zalewski Maciej (European Regional Centre for Ecohydrologyunder the auspices of UNESCO, Poland), Zegait Rachid (Ziane Achour University of Djelfa), Zerafat Mohammad (Shiraz University, Shiraz, Iran), Zgórska Aleksandra (Central Mining Institute, Poland), Zhang Chunhui (China University of Mining & Technology, China), Zhang Wenbo (Northwest Minzu University, Lanzhou China), Zhu Guocheng (Hunan University of Science and Technology, Xiangtan, China), Zwierzchowski Ryszard (Zakład Systemów Ciepłowniczych i Gazowniczych, Politechnika Warszawska)

All Reviewers in 2021

Adamkiewicz Łukasz, Aksoy Özlem, Alwaeli Mohamed, Aneta Luczkiewicz, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Babbar Deepakshi, Badura Marek, Bajda Tomasz, Biedka Paweł, Błaszczak Barbara, Bodzek Michał, Bogacki Jan, Burszta-Adamiak Ewa, Cheng Gan, Chojecka Agnieszka, Chrzanowski Łukasz, Chwojnowski Andrzej, Ciesielczuk Tomasz, Cimochowicz-Rybicka Małgorzata, Curren Emily, Cydzik-Kwiatkowska Agnieszka, Czajka Agnieszka, Danielewicz Jan, Dannowski Ralf, Daoud Mounir, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Demirbaş Ahmet, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Franus Wojciech, G. Uchrin Christopher, Generowicz Agnieszka, Gębicki Jacek, Giergiczny Zbigniew, Gierszewski Piotr, Glińska-Lewczuk Katarzyna, Godłowska Jolanta, Gokalp Fulya, Gospodarek Janina, Górecki Tadeusz, Grabińska-Sota Elżbieta, Grifoni M., Gromiec Marek, Guo Xuetao, Gusiatin Zygmunt, Hartmann Peter, He Jianzhong, He Yong, Heese Tomasz, Hybská Helena, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Janowski Mirosław, Jordanov Igor, Jóżwiakowski Krzysztof, Juśkiewicz Włodzimierz, Kabsch-Korbutowicz Małgorzata, Kalinowski Radosław, Kalka Joanna, Kapusta Paweł, Karczewska Anna, Karczmarczyk Agnieszka, Kicińska Alicja, Kiciński Jan, Kijowska-Strugała Małgorzata, Klejnowski Krzysztof, Kłosok-Bazan Iwona, Kolada Agnieszka, Konieczny Krystyna, Kostecki Maciej, Kowalczewska-Madura Katarzyna, Kowalczuk Marek, Kozielska Barbara, Kozłowski Kamil, Krzemień Alicja, Kulig Andrzej, Kwaśny Justyna, Kyzioł-Komosińska Joanna, Ledakowicz Stanislaw, Leites Luchese Claudia, Leszczyńska-Sejda Katarzyna, Li Mingyang, Liu Chao, Mahmood Khalid, Majewska-Nowak Katarzyna, Makisha Nikolay, Malina Grzegorz, Markowska-Szczupak Agata, Mocek Andrzej, Mokrzycki Eugeniusz, Molenda Tadeusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Myrta Anna, Narayanasamy Selvaraju, Nzila Alexis, OIkuski Tadeusz, Oleniacz Robert, Pacyna Jozef, Pająk Tadeusz, Pal Subodh Chandra, Panagopoulos Argyris, Paruch Adam, Paszkowski Waldemar, Pawęska Katarzyna, Paz-Ferreiro Jorge, Paździor Katarzyna, Pempkowiak Janusz, Piątkiewicz Wojciech, Piechowicz Janusz, Piotrowska-Seget Zofia, Pisoni E., Piwowar Arkadiusz, Pleban Dariusz, Policht-Latawiec Agnieszka, Polkowska Żaneta, Poluszyńska Joanna, Rajca Mariola, Reizer Magdalena, Riesgo Fernández Pedro, Rith Monorom, Rybicki Stanisław, Rydzkowski Tomasz, Rzepa Grzegorz, Rzeźnik Wojciech, Rzętała Mariusz, Sabovljevic Marko, Scudiero Rosaria, Sekret Robert, Sheng Yanqing, Sławomir Stelmach, Słowik Leszek, Sočo Eleonora, Sojka Mariusz, Sophonrat Nanta, Sówka Izabela, Spiak Zofia, Stachowski Piotr, Stańczyk-Mazanek Ewa, Stebel Adam, Sulieman Magboul, Surmacz-Górska Joanna, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szopińska Kinga, Szymański Kazimierz, Ślipko Katarzyna, Tepe Yalçin, Tórz Agnieszka, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Urošević Mira, Uzarowicz Łukasz, Vakili Mohammadtaghi, Van Harreveld A.P., Voutchkova Denitza, Wang Gang, Wang X.K., Werbińska-Wojciechowska Sylwia, Wiatkowski Mirosław, Wielgosiński Grzegorz, Wilk Pawel, Willner Joanna, Wisniewski Jacek, Wiśniowska Ewa, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojnowska-Baryła Irena, Wolska Małgorzata, Wszołek Tadeusz, Wu Yonghua, Yusuf Mohammad, Zuberi Amina, Zuwała Jarosław, Zwoździak Jerzy.


All Reviewers in 2020

Adamiec Ewa, Adamkiewicz Łukasz, Ahammed M. Mansoor, Akcicek Ekrem, Ameur Houari, Anielak Anna, Antonkiewicz Jacek, Avino Pasquale, Badura Marek, Barabasz Wiesław, Barthakur Manoj, Battegazzore Daniele, Biedka Paweł, Bilek Maciej, Bisschop Lieselot, Błaszczak Barbara, Błażejewski Ryszard, Bochoidze Inga, Bodzek Michał, Bogacki Jan, Borella Paola, Borowiak Klaudia, Borralho Teresa, Boyacioglu Hülya, Bunjongsiri Kultida, Burszta-Adamiak Ewa, Calderon Raul, Chatveera Burachat Chatveera, Cheng Gan, Chiwa Masaaki, Chojnicki Józef, Chrzanowski Łukasz, Ciesielczuk Tomasz, Czajka Agnieszka, Czaplicka Marianna, Daoud Mounir, Dąbek Lidia, Değermenci Gökçe, Dejan Dragan, Deluchat Véronique, Dereszewska Alina, Dębowski Marcin, Dong Shuying, Dudzińska Marzenna, Dunalska Julita, Dymaczewski Zbysław, El-Maradny Amr, Farfan-Cabrera Leonardo, Filizok Işık, Franus Wojciech, García-Ávila Fernando, Gariglio N.F., Gaya M.S, Gebicki Jacek, Giergiczny Zbigniew, Glińska-Lewczuk Katarzyna, Gnida Anna, Gospodarek Janina, Grabińska-Sota Elżbieta, Gusiatin Zygmunt, Harnisz Monika, Hartmann Peter, Hawrot-Paw Małgorzata, He Jianzhong, Hirabayashi Satoshi, Hulisz Piotr, Imhoff Silvia, Iurchenko Valentina, Jabłońska-Czapla Magdalena, Jacukowicz-Sobala Irena, Jeż-Walkowiak Joanna, Jordanov Igor, Jóżwiakowski Krzysztof, Kabsch-Korbutowicz Małgorzata, Kajda-Szcześniak Małgorzata, Kalinowski Radosław, Kalka Joanna, Karczewska Anna, Karwowska Ewa, Kim Ki-Hyun, Klejnowski Krzysztof, Klojzy-Karczmarczyk Beata, Korniłłowicz-Kowalska Teresa, Korus Irena, Kostecki Maciej, Koszelnik Piotr, Koter Stanisław, Kowalska Beata, Kowalski Zygmunt, Kozielska Barbara, Krzyżyńska Renata, Kulig Andrzej, Kwarciak-Kozłowska Anna, Kyzioł-Komosińska Joanna, Lagzdins Ainis, Ledakowicz Stanislaw, Ligęza Sławomir, Liu Xingpo, Loga Małgorzata, Łebkowska Maria, Macherzyński Mariusz, Makisha Nikolay, Makowska Małgorzata, Masłoń Adam, Mazur Zbigniew, Michel Monika, Miechówka Anna, Miksch Korneliusz, Mnuchin Nathan, Mokrzycki Eugeniusz, Molkenthin Frank, Mosquera Corral Anuska, Muhmood Atif, Muntean Edward, Myrta Anna, Nahorski Zbigniew, Narayanasamy Selvaraju, Naumczyk Jeremi, Nawalany Marek, Noubactep C., Nowakowski Piotr, Obarska-Pempkowiak Hanna, Orge C.A., Paul Lothar, Pawęska Katarzyna, Paździor Katarzyna, Pempkowiak Janusz, Peña A., Pietr Stanisław, Piotrowska-Seget Zofia, Pisoni E., Płaza Grażyna, Polkowska Żaneta, Reizer Magdalena, Renman Gunno, Rith Monorom, Romanovski Valentin, Rybicki Stanisław, Rydzkowski Tomasz, Rzętała Mariusz, Sadeghi Mahdi, Sakakibara Yutaka, Scudiero Rosaria, Semaan Mary, Seredyński Franciszek, Sergienko Ruslan, Shen Yujun, Sheng Yanqing, Sidełko Robert, Sočo Eleonora, Sojka Mariusz, Sówka Izabela, Spiak Zofia, Stegenta-Dąbrowska Sylwia, Steliga Teresa, Sulieman Magboul, Surmacz-Górska Joanna, Suryadevara Nagaraja, Suska-Malawska Małgorzata, Szalinska van Overdijk Ewa, Szczerbowski Radosław, Szetela Ryszard, Szpyrka Ewa, Szulczyński Bartosz, Szwast Maciej, Szyszlak-Bargłowicz Joanna, Ślipko Katarzyna, Świetlik Ryszard, Tabernacka Agnieszka, Tepe Yalçin, Tobiszewski Marek, Treichel Wiktor, Tyagi Uplabdhi, Uliasz-Bocheńczyk Alicja, Uzarowicz Łukasz, Van Harreveld A.P., Wang X. K., Wasielewski Ryszard, Wiatkowski Mirosław, Wielgosiński Grzegorz, Willner Joanna, Wisniewski Jacek, Witczak Joanna, Witkiewicz Zygfryd, Włodarczyk Małgorzata, Włodarczyk-Makuła Maria, Wojciechowska Ewa, Wojtkowska Małgorzata, Xinhui Duan, Yang Chunping, Yaqian Zhao Yaqian, Załęska-Radziwiłł Monika, Zamorska Justyna, Zasina Damian, Zawadzki Jarosław, Zdeb Monika M., Zheng Guodi, Zhu Ivan X., Ziułkiewicz Maciej, Zuberi Amina, Zwoździak Jerzy, Żabczyński Sebastian, Żukowski Witold, Żygadło Maria.




Plagiarism Policy

Anti-plagiarism policy

In accordance with AEP requirements, the authors of all articles submitted to the Editorial Office declare that the paper is an original work. Articles that have been approved by the Editorial Board for further processing are checked for originality using the program and iThenticate. As plagiarism, the Editorial Board (according to the definition of plagiarism/anti-plagiarism) recognizes:

• claiming someone else's work or parts of it as your own;
• copying someone else's or your own (self-plagiarism) fragments of articles without reference to the publication (title of the work, names of authors) from which it was taken
• inserting fragments of other works into the article, changing only the order of the sentence or introducing only minor changes to it
• an article in which the copied fragments, despite citing their sources, constitute a significant/major part of the article.

In case of plagiarism/self-plagiarism, further work on this article is stopped and it is removed from the Editorial System. The authors of the article (via the corresponding author) submitted to the Editorial Office of the AEP are informed about the reasons for removing the article.

This page uses 'cookies'. Learn more