Applied sciences

Archives of Foundry Engineering

Content

Archives of Foundry Engineering | 2019 | vol. 19 | No 2

Download PDF Download RIS Download Bibtex

Abstract

The current casting production of castings brings increased demands for surface and internal quality of the castings. Important factors, that influence the quality of casted components, are the materials used for the manufacture of moulds and cores. For the preparation and production of moulds and cores, in order to achieve a low level of casting defects, then it used a high quality input materials, including various types of sands, modified binders, additives, etc. However, even the most expensive raw materials are not a guarantee to achieve the quality of production.

It is always necessary to choose the appropriate combination of input material together with an appropriate proposal for the way of the production, the metallurgical treatment of cast alloy, etc. The aim of this paper is to establish the basic principles for the selection of the base core mixtures components – sands to eliminate defects from the tension, specifically veining. Various silica sand, which are commonly used in foundries of Middle Europe region, were selected and tested.

Go to article

Authors and Affiliations

J. Beňo
K. Adamusová
V. Merta
T. Bajer
Download PDF Download RIS Download Bibtex

Abstract

The goal of this article is non-destructive ultrasonic testing of internal castings defects. Our task was to cast several samples with defects like porosity and cavities (where belongs mostly shrinkages) and then pass these samples under ultrasonic testing. The characteristics of ultrasonic control of castings are presented in the theoretical part of this article. Ultrasonic control is a volume non-destructive method that can detect internal defects in controlled materials without damaging the construction. It is one of the most widely used methods of volume non-destructive testing. For experimental control were made several cylindrical samples from ferritic grey and ductile cast iron. Because of the form and dispersion of graphite of grey cast iron it was not possible to make ultrasonic records on this casting with probe we used, so we worked only with ductile cast iron. Ultrasonic records of casting control are shown and described in the experimental part. The evaluation of the measurement results and the reliability of the ultrasonic method in castings control is listed at the end of this article.

Go to article

Authors and Affiliations

M. Boháčik
M. Mičian
R. Koňár
L. Trško
J. Winczek
Download PDF Download RIS Download Bibtex

Abstract

This work presents the results of the research of the effect of the inoculant Emgesal Flux 5 on the microstructure of the magnesium alloy AZ91. The concentration of the inoculant was increased in samples in the range from 0.1% to 0.6%. The thermal processes were examined with the use of Derivative and Thermal Analysis (DTA). During the examination, the DTA samplers were preheated up to 180 °C. A particular attention was paid to finding the optimum amount of inoculant, which would cause fragmentation of the microstructure. The concentration of each element was verified by means of a spark spectrometer. In addition, the microstructures of the samples were examined with the use of an optical microscope, and an image analysis with a statistical analysis using the NIS–Elements program were carried out. Those analyses aimed at examining the differences between the grain diameters of phase αMg and eutectic αMg+γ(Mg17Al12) in the prepared samples as well as the average size of each type of grain by way of measuring their perimeters. This paper is an introduction to a further research of grain refinement in magnesium alloys, especially AZ91. Another purpose of this research is to achieve better microstructure fragmentation of magnesium alloys without the related changes of the chemical composition, which should improve the mechanical properties.

Go to article

Authors and Affiliations

C. Rapiejko
D. Mikusek
A. Andrzejczak
T. Pacyniak
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, the most popular production method for manufacturing high quality casts of aluminium alloys is the hot and cold chamber die casting. Die casts made of hypereutectoid silumin Silafont 36 AlSi9Mg are used for construction elements in the automotive industry. The influence of the metal input and circulating scrap proportion on porosity and mechanical properties of the cast has been examined and the results have been shown in this article. A little porosity in samples has not influenced the details strength and the addition of the circulating scrap has contributed to the growth of the maximum tensile force. Introducing 80% of the circulating scrap has caused great porosity which led to reduce the strength of the detail. The proportion of 40% of the metal input and 60% of the circulating scrap is a configuration safe for the details quality in terms of porosity and mechanical strength.

Go to article

Authors and Affiliations

P. Schlafka
A.W. Bydałek
Download PDF Download RIS Download Bibtex

Abstract

Recently, the use of inorganic binders cured by heat as a progressive technology for large scale production of cores is widely discussed topic in aluminium foundries. As practical experiences show, knock-out properties of inorganic binders were significantly increased, although they cannot overcome organic based binder systems. This paper contains information about hot curing processes based on alkali silicate and geopolymer binder systems for core making. Main differences between hot cured geopolymers and hot cured alkali silicate based inorganic binders are discussed. Theory of geopolymer binder states, that binder bridge destruction is mainly of adhesive character. The main aim of this research paper was to examine binder bridge destruction of alkali silicate and geopolymer binder systems. In order to fulfil this objective, sample parts were submitted to defined thermal load, broken and by using SEM analysis, binder bridge destruction mechanism was observed. Results showed that geopolymer binder system examined within this investigation does not have mainly adhesive destruction of binder bridges, however the ratio of adhesive-cohesive to cohesive destruction is higher than by use of alkali silicate based binder systems, therefore better knock-out properties can be expected.

Go to article

Authors and Affiliations

I. Vaskova
M. Conev
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the technology of manufacturing layered castings, consisting of grey cast iron (base part) and high-chromium stainless steel (working part/layer). The aim of researches was an attempt of integration of heat treatment of steel X46Cr13 grade with founding of grey cast iron in bimetallic system and determination of the influence of cooling rate of bimetallic system in classical sand mould with bentonite on microstructure and hardness of the working layer. The castings were manufactured using mould cavity preparation method, where steel plate was poured by grey cast iron using different pouring temperature and thickness of base part. Then, the quality of joint between cast iron and steel plate was estimated by using ultrasonic non-destructive testing. The efficiency of heat treatment process was analysed by measurement of hardness and in metallographic examination. Conducted studies showed, that self-hardening’s ability of steel X46Cr13 let obtain technologically usable layered casting characterized by hardness of working surface up to 35 HRC.

Go to article

Authors and Affiliations

N. Przyszlak
T. Wróbel
Download PDF Download RIS Download Bibtex

Abstract

In this work, an assessment and comparison of the quality of selected bentonites and bentonite mixtures was made. The samples consisted of available foundry materials used for bonding green sands. Determining the homogeneity degree and specific surface area of the grains allowed us to compare the examined materials and determine their influence on other parameters. On the basis of a thermal analysis of the bentonites or bentonite mixtures, the changes occurring in the sample during its heating were determined. Determining the potential for ion exchange and montmorillonite content enabled us to assess the binding properties of the materials. The preparation of six green sands with different bentonites or bentonite mixtures gave us the opportunity to assess the changes in apparent density, permeability, compressive strength and friability as a function of humidity, and the impact of different materials on the mentioned parameters. Their charts were analyzed, and the molding sand with the addition of bentonite or a bentonite mixture was selected for which these parameters are favorable. On this basis, the best-presented binding material was assessed and selected.

Go to article

Authors and Affiliations

S. Paź
D. Drożyński
M. Górny
S. Cukrowicz
Download PDF Download RIS Download Bibtex

Abstract

Gas atmosphere at the sand mould/cast alloy interface determines the quality of the casting obtained. Therefore the aim of this study was to measure and evaluate the gas forming tendency of selected moulding sands with alkyd resins. During direct and indirect gas measurements, the kinetics of gas evolution was recorded as a function of the temperature of the sand mixture undergoing the process of thermal destruction. The content of hydrogen and oxygen was continuously monitored to establish the type of the atmosphere created by the evolved gases (oxidizing/reducing). The existing research methodology [1, 7, 8] has been extended to include pressure-assisted technique of indirect measurement of the gas evolution rate. For this part of the studies, a new concept of the measurement was designed and tested.

This article presents the results of measurements and compares gas emissions from two sand mixtures containing alkyd resins known under the trade name SL and SL2002, in which the polymerization process is initiated with isocyanate. Studies of the gas forming tendency were carried out by three methods on three test stands to record the gas evolution kinetics and evaluate the risk of gas formation in a moulding or core sand.

Proprietary methods for indirect evaluation of the gas forming tendency have demonstrated a number of beneficial aspects, mainly due to the ability to record the quantity and composition of the evolved gases in real time and under stable and reproducible measurement conditions. Direct measurement of gas evolution rate from the tested sands during cast iron pouring process enables a comparison of the results with the results obtained by indirect methods.

Go to article

Authors and Affiliations

J. Mocek
Download PDF Download RIS Download Bibtex

Abstract

The article deals with the gas development of the geopolymer binder system hardened by heat and provides the comparison with organic binder systems. The GEOPOL® W technology is completely inorganic binder system, based on water. This fact allow that the gas generated during pouring is based on water vapour only. No dangerous emissions, fumes or unpleasant odours are developed. The calculated amount of water vapour generated from GEOPOL® W sand mixture is 1.9 cm3/g. The measured volume of gas for GEOPOL® W is 4.3 cm3/g. The measurement of gas evolution proves that the inorganic binder system GEOPOL® W generates very low volume of gas (water vapour) in comparison with PUR cold box amine and Croning. The amount of gas is several times lower than PUR cold box amine (3.7x) and Croning (4.2x). The experiment results are consistent with the literature sources. The difference between the calculated and the measured gas volume is justified by the reverse moisture absorption from the air after dehydration during storing and preparing the sand samples. Minimal generated volumes of gas/water vapour brings, mainly as was stated no dangerous emissions, also the following advantages: minimal risk of bubble defects creation, the good castings without defects, reduced costs for exhaust air treatment, no condensates on dies, reduced costs for cleaning.

Go to article

Authors and Affiliations

M. Vykoukal
A. Burian
M. Přerovská
T. Bajer
J. Beňo
Download PDF Download RIS Download Bibtex

Abstract

The excellent property combination of thin wall ductile iron castings (TWDI), including thin wall alloyed cast iron (e.g. austenitic TWDI) has opened new horizons for cast iron to replace steel castings and forgings in many engineering applications with considerable cost benefits. TWDI is considered as a potential material for the preparation of light castings with good mechanical and utility properties, the cost of which is relatively low. In this study, unalloyed and high Ni-alloyed (25% Ni) spheroidal graphite cast iron, with an austenitic metallic matrix were investigated. The research was conducted for thin-walled iron castings with 2, 3 and 5mm wall thickness, using different mould temperature (20°C, and 160°C) to achieve various cooling rates. The metallographic examinations i.e. characteristic of graphite nodules, metallic matrix, and primary grains of austenite dendrites (in high-nickel NTWDI) and mechanical properties were investigated. The study shows that homogeneity of the casting structure of thin-walled castings varies when changing the wall thickness and mould temperature. Finally, mechanical properties of thin-walled ductile iron castings with ferritic-pearlitic and austenitic metallic matrix have been shown.

Go to article

Authors and Affiliations

M. Górny
M. Kawalec
G. Witek
A. Rejek
Download PDF Download RIS Download Bibtex

Abstract

This article focuses on the study of the influence of remelting and subsequent natural and artificial ageing on the structure of recycled AlSi9Cu3 alloy with increased iron content. The assessed changes in eutectic silicon and iron-based intermetallic phases were carried out using optical and scanning electron microscopy. The degradation of the eutectic silicon morphology due to remelting occurred only at the highest numbers of remelting. The effect of remelting the investigated alloy, which is accompanied by a gradual increase in wt. % Fe, began to manifest significantly through a change in the length of the ferric phases after the fourth remelting. As expected, the artificial ageing process has proven to be more effective than natural ageing. It has led to a change in the eutectic silicon morphology and has been beneficial in reducing the lengths of adverse ferric phases. The use of alloys with higher numbers of remelting, or with greater “contamination”, for the manufacture of shape-challenging castings is possible when using a suitable method of eliminating the negative factors of the remelting process. The results of our investigation show a suitable method of the above elimination the application of heat treatment T5 – via artificial ageing.

Go to article

Authors and Affiliations

M. Matejka
D. Bolibruchová
Download PDF Download RIS Download Bibtex

Abstract

The role of slag in the process of continuous casting of steel (CCS) is reduced to the thermal and chemical insulation of the liquid steel surface, and additionally to refining. The ability to adsorb non-metallic inclusions flowing off from the crystallizer, mainly Al2O3, determines its physicochemical properties. As a result of adsorption and dissolution of inclusions tin he liquid layer the viscosity and thickness of mould flux change, which eventually affects the technological parameters and behavior of slag in the crystallizer. The influence of aluminum oxide on the viscosity of slag was empirically investigated with a structural viscosity model worked out by Nakamoto. The results of the simulation are presented in the form of plots. Authors observed a significant influence of Al2O3 on the slag viscosity, which suggests that this effect should be taken into account when selecting chemical composition of mould flux for definite types of steel. The results of calculations also show that the disturbances in casting caused by the use of the mould slag may be connected with the content of non-metallic inclusions in steel.

Go to article

Authors and Affiliations

D. Kalisz
K. Kuglin
Download PDF Download RIS Download Bibtex

Abstract

The article describes the detection of a defect in a cast iron casting. It analyzes the cause of the crack in the Turbine Component casting. In this article, we are focusing on a particular turbine casting that is commonly used in automobiles as one of the components for turbochargers. The turbine is a casting made of ductile cast iron with a visible crack on the naked eye. The formation of cracks in castings is a common but undesirable phenomenon in the foundry practice. It is important to identify the errors, but also to know the cause of defects in castings. The solution is a detailed error analysis. In this paper I used metallographic analysis and magnetic powder method. The crack formation is due to tension in the casting, which results in tensile, shear, or shear forces. The crack formation kinetics is difficult because it is still very low during hardening and shortly after the casting is overloaded. The crack is most often due to core resistance or shrinkage molds that begin after the surface layer is tightened when the strength of the material is negligible to the end of the crystallisation.

Go to article

Authors and Affiliations

E. Kantoríková
Download PDF Download RIS Download Bibtex

Abstract

By the method of modern physical material science (optic microscopy scanning and transmission electron microscopy) the analysis of structural phase states, the morphology of the second phase inclusions and defect substructure of Al-Si alloy (silumin) of hypoeutectic composition, subjected to electron beam processing was done with the following parameters: energy density 25-35 J/cm2, beam length 150 μs, pulse number – 3, pulse repetition rate – 0.3 Hz, pressure of residual gas (argon) 0.02 Pa. The surface irradiation results in the melting of the surface layer, the dissolution of boundary inclusions, the stricture formation of high speed cellular crystallization of submicron sizes, the repeated precipitation of the second phase nanodimentional particles. With the increased distance from the irradiation surface the layer containing the second phase inclusions of quasi-equilibrium shape along with the crystallization cells was revealed. It is indicative of the processes of Al-Si alloy structure globalization on electron beam processing.

Go to article

Authors and Affiliations

S. Konovalov
V. Gromov
D. Zaguliyaev
Y. Ivanov
A. Semin
J. Rubannikova
Download PDF Download RIS Download Bibtex

Abstract

The paper is concerned with comparing the methods for determining the ferrite content in castings from duplex stainless steels. It uses Schaeffler diagram, empirical formula based calculation, image analysis of metallographic sample, X-ray diffraction and measurement with a feritscope. The influence of wall thickness of the casting on the ferrite content was tested too. The results of the experiments show that the casting thickness of 25 or 60 mm does not have a significant effect on the measured amount of ferrite. The image analysis of metallographic sample and the measurement with the feritscope appear to be the most suitable methods. On the contrary, predictive methods, such as Schaeffler diagram or empirical formula based calculation are only indicative and cannot replace the real measurements. X-ray diffraction seems to be the least suitable measuring method. Values of ferrite content measured in such a way often deviated from the values measured by image analysis and with feritscope.

Go to article

Authors and Affiliations

V. Kaňa
V. Pernica
A. Zadera
V. Krutiš
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study is to demonstrate the possibility of using moulds made from the environmentally friendly sands with hydrated sodium silicate in modified ablation casting. The ablation casting technology is primarily intended for castings with diversified wall thickness and complex shapes made in sand moulds. The article presents the effect of binder content and hardening time on the bending strength Rg u of moulding sands with binders based on hydrated sodium silicate hardened by microwave technology. The aim of the research was to develop an optimal sand composition that would provide the strength necessary to make a mould capable of withstanding the modified ablation casting process. At the same time, the sand composition should guarantee the susceptibility of the mould to the destructive action of the ablation medium, which in this case is water. Tests have shown that microwave hardening provides satisfactory moulds’ strength properties even at a low binder content in the sand mixture.

Go to article

Authors and Affiliations

S. Puzio
J. Kamińska
K. Major-Gabryś
M. Angrecki
M. Hosadyna-Kondracka
Download PDF Download RIS Download Bibtex

Abstract

The exudation layer seriously affects the properties and the surface finish of the tin bronze alloy. The effective control of the exudation thickness is important measure for improving the properties of the alloy. In order to study the influence of process parameters on the thickness of exudate layer, the tin bronze alloy was prepared by continuous unidirectional solidification technology at different process parameters. The microstructure of the continuous unidirectional solidification tin bronze alloy was analyzed. The effect of process parameters on microstructure and chemical compositions was studied by orthogonal experiment. The results show that there exists an exudation layer on the surface of the continuous unidirectional solidification tin bronze alloy, and the exudation is mainly composed of a tin-rich precipitated phase. It indicates that the continuous casting speed is the main factor affecting the thickness of exudation layer, followed by mold temperature, melt temperature, cooling water temperature and cooling distance.

Go to article

Authors and Affiliations

Jihui Luo
Fang He
Download PDF Download RIS Download Bibtex

Abstract

Precision casting is currently motivated by high demand especially for castings for the aerospace, automotive and gas turbine industries. High demands on precision of this parts pressure foundries to search for the new tools which can help them to improve the production. One of these tools is the numerical simulation of injection process, whereas such software especially for investment casting wax injection, process does not exist yet and for this case must be the existing software, for alloys or plastic, modified. This paper focuses on the use of numerical simulations to predict the behavior of injected models of gas turbine blades segments. The properties of wax mixtures, which were imported into the Cadmould simulation software as a material model, were found. The results of the simulations were verified using the results of 3D scanning measurements of wax models. As a supporting technology for verifying the results was used the Infrared Thermography.

Go to article

Authors and Affiliations

A. Herman
I. Kubelková
O. Vrátný
Download PDF Download RIS Download Bibtex

Abstract

Relatively cold die material comes into contact with the substantially higher temperature melt during the casting cycle, causing high thermal fluctuations resulting into the cyclic change of thermal field. The presented contribution is devoted to the assessment of the impact of temperature distribution on individual zones in the die volume. The evaluated parameter is the die temperature. It was monitored at two selected locations with the 1 mm, 2 mm, 5 mm, 10 mm and 20 mm spacing from the die cavity surface to the volume of cover die and ejector die. As a comparative parameter, the melt temperature in the middle of the runner above the measuring point and the melt temperature close to the die face were monitored. Overall, the temperature was monitored in 26 evaluation points. The measurement was performed using the Magmasoft simulation software. The input settings of the casting cycle in the simulation were identical to those in real operation. It was found, that the most heavily stressed die zones by temperature were within the 20 mm from the die face. Above this distance, the heat supplied by the melt passes gradually into the entire die mass without significant temperature fluctuations. To verify the impact of the die cooling on the thermal field, a tempering system was designed to ensure different heat dissipation conditions in individual locations. At the end of the contribution, the measures proposals to reduce the high change of thermal field of dies resulting from the design of the tempering channel are presented. These proposals will be experimentally verified in the following research work.

Go to article

Authors and Affiliations

J. Majerník
M. Podařil
Download PDF Download RIS Download Bibtex

Abstract

The ecological factor is very important in shaping properties of alloys. It leads to a limitation or elimination, from the surroundings, of harmful elements from the heavy metals group. The so-called eco-brasses group comprises common lead-free brasses containing 10 to 40% of zinc and arsenic brasses of a high dezincification resistance. Among standardized alloys, CW511L alloy ( acc. to EN standard) or MS-60 alloy (acc. to DIN) can be mentioned. Investigations were performed on two different kinds of metal charges: ingots cast by gravity and the ones obtained in the semi-continuous casting technology with using crystallizers. The casting quality was analysed on the basis of the microstructure images and mechanical properties. The investigations also concerned increasing the corrosion resistance of lead-free alloys. This resistance was determined by the dezincification tendency of alloys after the introduction of alloying additions, i.e. aluminium, arsenic and tin. The investigations focused on the fact that not only alloying additions but also the production methods of charge materials are essential for the quality of produced castings. The introduced additions of aluminium and tin in amounts: 0÷1.2 wt% decreased the dezincification tendency, while arsenic, already in the amount of 0.033 wt%, significantly stopped corrosion, limiting the dezincification process of lead-free CuZn37 brass. At higher arsenic contents, corrosion occurs only within the thin surface layer of the casting (20 μ).

Go to article

Authors and Affiliations

J. Kozana
A. Garbacz-Klempka
M. Piękoś

Instructions for authors

Submission


To submit the article, please use the Editorial System provided here:

https://www.editorialsystem.com/afe


Papers submitted in any other way will not be accepted.



The Journal does not have submission charges.


The APC Article Processing Charge is 110 euros (500zł for Polish authors). In some cases, the APC is paid as a part of the scientific conference fee, for which the AFE journal is a supportive one. If not, it is payable after the acceptance of the final article by direct money transfer.


Bank account details:


Account holder: Stowarzyszenie Wychowankow Politechniki Slaskiej Kolo Odlewnikow
Account holder address: ul. Towarowa 7, 44-100 Gliwice, Poland
Account numbers: BIC BPKOPLPW IBAN PL17 1020 2401 0000 0202 0183 3748


Instructions for the preparation of an Archives of Foundry Engineering Paper

Publication Ethics Policy


Publication Ethics Policy

The standards of expected ethical behavior for all parties involved in publishing in the Archives of Foundry Engineering journal: the author, the journal editor and editorial board, the peer reviewers and the publisher are listed below.

All the articles submitted for publication in Archives of Foundry Engineering are peer reviewed for authenticity, ethical issues and usefulness as per Review Procedure document.

Duties of Editors
1. Monitoring the ethical standards: Editorial Board monitors the ethical standards of the submitted manuscripts and takes all possible measures against any publication malpractices.
2. Fair play: Submitted manuscripts are evaluated for their scientific content without regard to race, gender, sexual orientation, religious beliefs, citizenship, political ideology or any other issues that is a personal or human right.
3. Publication decisions: The Editor in Chief is responsible for deciding which of the submitted articles should or should not be published. The decision to accept or reject the article is based on its importance, originality, clarity, and its relevance to the scope of the journal and is made after the review process.
4. Confidentiality: The Editor in Chief and the members of the Editorial Board t ensure that all materials submitted to the journal remain confidential during the review process. They must not disclose any information about a submitted manuscript to anyone other than the parties involved in the publishing process i.e., authors, reviewers, potential reviewers, other editorial advisers, and the publisher.
5. Disclosure and conflict of interest: Unpublished materials disclosed in the submitted manuscript must not be used by the Editor and the Editorial Board in their own research without written consent of authors. Editors always precludes business needs from compromising intellectual and ethical standards.
6. Maintain the integrity of the academic record: The editors will guard the integrity of the published academic record by issuing corrections and retractions when needed and pursuing suspected or alleged research and publication misconduct. Plagiarism and fraudulent data is not acceptable. Editorial Board always be willing to publish corrections, clarifications, retractions and apologies when needed.

Retractions of the articles: the Editor in Chief will consider retracting a publication if:
- there are clear evidences that the findings are unreliable, either as a result of misconduct (e.g. data fabrication) or honest error (e.g. miscalculation or experimental error)
- the findings have previously been published elsewhere without proper cross-referencing, permission or justification (cases of redundant publication)
- it constitutes plagiarism or reports unethical research.
Notice of the retraction will be linked to the retracted article (by including the title and authors in the retraction heading), clearly identifies the retracted article and state who is retracting the article. Retraction notices should always mention the reason(s) for retraction to distinguish honest error from misconduct.
Retracted articles will not be removed from printed copies of the journal nor from electronic archives but their retracted status will be indicated as clearly as possible.

Duties of Authors
1. Reporting standards: Authors of original research should present an accurate account of the work performed as well as an objective discussion of its significance. Underlying data should be represented accurately in the paper. The paper should contain sufficient details and references to permit others to replicate the work. The fabrication of results and making of fraudulent or inaccurate statements constitute unethical behavior and will cause rejection or retraction of a manuscript or a published article.
2. Originality and plagiarism: Authors should ensure that they have written entirely original works, and if the authors have used the work and/or words of others they need to be cited or quoted. Plagiarism and fraudulent data is not acceptable.
3. Data access retention: Authors may be asked to provide the raw data for editorial review, should be prepared to provide public access to such data, and should be prepared to retain such data for a reasonable time after publication of their paper.
4. Multiple or concurrent publication: Authors should not in general publish a manuscript describing essentially the same research in more than one journal. Submitting the same manuscript to more than one journal concurrently constitutes unethical publishing behavior and is unacceptable.
5. Authorship of the manuscript: Authorship should be limited to those who have made a significant contribution to the conception, design, execution, or interpretation of the report study. All those who have made contributions should be listed as co-authors. The corresponding author should ensure that all appropriate co-authors and no inappropriate co-authors are included in the paper, and that all co-authors have seen and approved the final version of the paper and have agreed to its submission for publication.
6. Acknowledgement of sources: The proper acknowledgment of the work of others must always be given. The authors should cite publications that have been influential in determining the scope of the reported work.
7. Fundamental errors in published works: When the author discovers a significant error or inaccuracy in his/her own published work, it is the author’s obligation to promptly notify the journal editor or publisher and cooperate with the editor to retract or correct the paper.

Duties of Reviewers
1. Contribution to editorial decisions: Peer reviews assist the editor in making editorial decisions and may also help authors to improve their manuscript.
2. Promptness: Any selected reviewer who feels unqualified to review the research reported in a manuscript or knows that its timely review will be impossible should notify the editor and excuse himself/herself from the review process.
3. Confidentiality: All manuscript received for review must be treated as confidential documents. They must not be shown to or discussed with others except those authorized by the editor.
4. Standards of objectivity: Reviews should be conducted objectively. Personal criticism of the author is inappropriate. Reviewers should express their views clearly with appropriate supporting arguments.
5. Acknowledgement of sources: Reviewers should identify the relevant published work that has not been cited by authors. Any substantial similarity or overlap between the manuscript under consideration and any other published paper should be reported to the editor.
6. Disclosure and conflict of Interest: Privileged information or ideas obtained through peer review must be kept confidential and not used for personal advantage. Reviewers should not consider evaluating manuscripts in which they have conflicts of interest resulting from competitive, collaborative, or other relations with any of the authors, companies, or institutions involved in writing a paper.

Peer-review Procedure


Review Procedure


The Review Procedure for articles submitted to the Archives of Foundry Engineering agrees with the recommendations of the Ministry of Science and Higher Education published in a booklet: ‘Dobre praktyki w procedurach recenzyjnych w nauce’ (MNiSW, Dobre praktyki w procedurach recenzyjnych w nauce, Warszawa 2011).

Papers submitted to the Editorial System are primarily screened by editors with respect to scope, formal issues and used template. Texts with obvious errors (formatting other than requested, missing references, evidently low scientific quality) will be rejected at this stage or will be sent for the adjustments.

Once verified each article is checked by the anti-plagiarism system Cross Check powered by iThenticate®. After the positive response, the article is moved into: Initially verified manuscripts. When the similarity level is too high, the article will be rejected. There is no strict rule (i.e., percentage of the similarity), and it is always subject to the Editor’s decision.
Initially verified manuscripts are then sent to at least four independent referees outside the author’s institution and at least two of them outside of Poland, who:

have no conflict of interests with the author,
are not in professional relationships with the author,
are competent in a given discipline and have at least a doctorate degree and respective
scientific achievements,
have a good reputation as reviewers.


The review form is available online at the Journal’s Editorial System and contains the following sections:

1. Article number and title in the Editorial System

2. The statement of the Reviewer (to choose the right options):

I declare that I have not guessed the identity of the Author. I declare that I have guessed the identity of the Author, but there is no conflict of interest

3. Detailed evaluation of the manuscript against other researches published to this point:

Do you think that the paper title corresponds with its contents?
Yes No
Do you think that the abstract expresses the paper contents well?
Yes No
Are the results or methods presented in the paper novel?
Yes No
Do the author(s) state clearly what they have achieved?
Yes No
Do you find the terminology employed proper?
Yes No
Do you find the bibliography representative and up-to-date?
Yes No
Do you find all necessary illustrations and tables?
Yes No
Do you think that the paper will be of interest to the journal readers?
Yes No

4. Reviewer conclusion

Accept without changes
Accept after changes suggested by reviewer.
Rate manuscript once again after major changes and another review
Reject


5. Information for Editors (not visible for authors).

6. Information for Authors


Reviewing is carried out in the double blind process (authors and reviewers do not know each other’s names).

The appointed reviewers obtain summary of the text and it is his/her decision upon accepting/rejecting the paper for review within a given time period 21 days.

The reviewers are obliged to keep opinions about the paper confidential and to not use knowledge about it before publication.

The reviewers send their review to the Archives of Foundry Engineering by Editorial System. The review is archived in the system.

Editors do not accept reviews, which do not conform to merit and formal rules of scientific reviewing like short positive or negative remarks not supported by a close scrutiny or definitely critical reviews with positive final conclusion. The reviewer’s remarks are sent to the author. He/she has to consider all remarks and revise the text accordingly.

The author of the text has the right to comment on the conclusions in case he/she does not agree with them. He/she can request the article withdrawal at any step of the article processing.

The Editor-in-Chief (supported by members of the Editorial Board) decides on publication based on remarks and conclusions presented by the reviewers, author’s comments and the final version of the manuscript.

The final Editor’s decision can be as follows:
Accept without changes
Reject


The rules for acceptance or rejection of the paper and the review form are available on the Web page of the AFE publisher.

Once a year Editorial Office publishes present list of cooperating reviewers.
Reviewing is free of charge.
All articles, including those rejected and withdrawn, are archived in the Editorial System.

Reviewers

List of Reviewers 2022

Shailee Acharya - S. V. I. T Vasad, India
Vivek Ayar - Birla Vishvakarma Mahavidyalaya Vallabh Vidyanagar, India
Mohammad Azadi - Semnan University, Iran
Azwinur Azwinur - Politeknik Negeri Lhokseumawe, Indonesia
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Iwona Bednarczyk - Silesian University of Technology, Gliwice, Poland
Artur Bobrowski - AGH University of Science and Technology, Kraków
Poland Łukasz Bohdal - Koszalin University of Technology, Koszalin Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Joanna Borowiecka-Jamrozek- The Kielce University of Technology, Poland
Debashish Bose - Metso Outotec India Private Limited, Vadodara, India
Andriy Burbelko - AGH University of Science and Technology, Kraków
Poland Ganesh Chate - KLS Gogte Institute of Technology, India
Murat Çolak - Bayburt University, Turkey
Adam Cwudziński - Politechnika Częstochowska, Częstochowa, Poland
Derya Dispinar- Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Gdynia, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Flora Faleschini - University of Padova, Italy
Imre Felde - Obuda University, Hungary
Róbert Findorák - Technical University of Košice, Slovak Republic
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Marek Góral - Rzeszow University of Technology, Poland
Barbara Grzegorczyk - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Ozen Gursoy - University of Padova, Italy
Gábor Gyarmati - University of Miskolc, Hungary
Jakub Hajkowski - Poznan University of Technology, Poland
Marek Hawryluk - Wroclaw University of Science and Technology, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Poland
Dario Iljkić - University of Rijeka, Croatia
Magdalena Jabłońska - Silesian University of Technology, Gliwice, Poland
Nalepa Jakub - Silesian University of Technology, Gliwice, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Aneta Jakubus - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Łukasz Jamrozowicz - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - AGH University of Science and Technology, Kraków, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Marcin Kondracki - Silesian University of Technology, Gliwice Poland
Vitaliy Korendiy - Lviv Polytechnic National University, Lviv, Ukraine
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Malgorzata Lagiewka - Politechnika Czestochowska, Częstochowa, Poland
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Jingkun Li - University of Science and Technology Beijing, China
Petr Lichy - Technical University Ostrava, Czech Republic
Y.C. Lin - Central South University, China
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Ewa Majchrzak - Silesian University of Technology, Gliwice, Poland
Barnali Maji - NIT-Durgapur: National Institute of Technology, Durgapur, India
Pawel Malinowski - AGH University of Science and Technology, Kraków, Poland
Marek Matejka - University of Zilina, Slovak Republic
Bohdan Mochnacki - Technical University of Occupational Safety Management, Katowice, Poland
Grzegorz Moskal - Silesian University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Silesian University of Technology, Gliwice, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Krzysztof Naplocha - Wrocław University of Science and Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Tomáš Obzina - VSB - Technical University of Ostrava, Czech Republic
Peiman Omranian Mohammadi - Shahid Bahonar University of Kerman, Iran
Zenon Opiekun - Politechnika Rzeszowska, Rzeszów, Poland
Onur Özbek - Duzce University, Turkey
Richard Pastirčák - University of Žilina, Slovak Republic
Miroslawa Pawlyta - Silesian University of Technology, Gliwice, Poland
Jacek Pezda - ATH Bielsko-Biała, Poland
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Jacek Pieprzyca - Silesian University of Technology, Gliwice, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Marcela Pokusová - Slovak Technical University in Bratislava, Slovak Republic
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich, West Midlands, United Kingdom
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University Thailand Amit Sata - MEFGI, Faculty of Engineering, India
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Vasudev Shinde - DKTE' s Textile and Engineering India Robert Sika - Politechnika Poznańska, Poznań, Poland
Bozo Smoljan - University North Croatia, Croatia
Leszek Sowa - Politechnika Częstochowska, Częstochowa, Poland
Sławomir Spadło - Kielce University of Technology, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Grzegorz Stradomski - Czestochowa University of Technology, Poland
Roland Suba - Schaeffler Skalica, spol. s r.o., Slovak Republic
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Jan Szajnar - Silesian University of Technology, Gliwice, Poland
Michal Szucki - TU Bergakademie Freiberg, Germany
Tomasz Szymczak - Lodz University of Technology, Poland
Damian Słota - Silesian University of Technology, Gliwice, Poland
Grzegorz Tęcza - AGH University of Science and Technology, Kraków, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Mirosław Tupaj - Rzeszow University of Technology, Poland
Robert B Tuttle - Western Michigan University United States Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Iveta Vaskova - Technical University of Kosice, Slovak Republic
Dorota Wilk-Kołodziejczyk - AGH University of Science and Technology, Kraków, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Çağlar Yüksel - Atatürk University, Turkey
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Jerzy Zych - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2021

Czesław Baron - Silesian University of Technology, Gliwice, Poland
Imam Basori - State University of Jakarta, Indonesia
Leszek Blacha - Silesian University of Technology, Gliwice
Poland Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Danka Bolibruchova - University of Zilina, Slovak Republic
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Zilina, Slovak Republic
Marcin Brzeziński - AGH University of Science and Technology, Kraków, Poland
Andriy Burbelko - AGH University of Science and Technology, Kraków, Poland
Alexandros Charitos - TU Bergakademie Freiberg, Germany
Ganesh Chate - KLS Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Zhipei Chen - University of Technology, Netherlands
Józef Dańko - AGH University of Science and Technology, Kraków, Poland
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Maciej Dyzia - Silesian University of Technology, Poland
Eray Erzi - Istanbul University, Turkey
Przemysław Fima - Institute of Metallurgy and Materials Science PAN, Kraków, Poland
Aldona Garbacz-Klempka - AGH University of Science and Technology, Kraków, Poland
Dipak Ghosh - Forace Polymers P Ltd., India
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Gábor Gyarmati - Foundry Institute, University of Miskolc, Hungary
Krzysztof Herbuś - Silesian University of Technology, Gliwice, Poland
Aleš Herman - Czech Technical University in Prague, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Małgorzata Hosadyna-Kondracka - Łukasiewicz Research Network - Krakow Institute of Technology, Kraków, Poland
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Krzysztof Janerka - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Agata Jażdżewska - Gdansk University of Technology, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Karolina Kaczmarska - AGH University of Science and Technology, Kraków, Poland
Jadwiga Kamińska - Centre of Casting Technology, Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Adrian Kampa - Silesian University of Technology, Gliwice, Poland
Wojciech Kapturkiewicz- AGH University of Science and Technology, Kraków, Poland
Tatiana Karkoszka - Silesian University of Technology, Gliwice, Poland
Gholamreza Khalaj - Islamic Azad University, Saveh Branch, Iran
Himanshu Khandelwal - National Institute of Foundry & Forging Technology, Hatia, Ranchi, India
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Grzegorz Kokot - Silesian University of Technology, Gliwice, Poland
Ladislav Kolařík - CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Dariusz Kopyciński - AGH University of Science and Technology, Kraków, Poland
Janusz Kozana - AGH University of Science and Technology, Kraków, Poland
Tomasz Kozieł - AGH University of Science and Technology, Kraków, Poland
Aleksandra Kozłowska - Silesian University of Technology, Gliwice Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Wacław Kuś - Silesian University of Technology, Gliwice, Poland
Jacques Lacaze - University of Toulouse, France
Avinash Lakshmikanthan - Nitte Meenakshi Institute of Technology, India
Jaime Lazaro-Nebreda - Brunel Centre for Advanced Solidification Technology, Brunel University London, United Kingdom
Janusz Lelito - AGH University of Science and Technology, Kraków, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Maria Maj - AGH University of Science and Technology, Kraków, Poland
Jerzy Mendakiewicz - Silesian University of Technology, Gliwice, Poland
Hanna Myalska-Głowacka - Silesian University of Technology, Gliwice, Poland
Kostiantyn Mykhalenkov - Physics-Technological Institute of Metals and Alloys, National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Poland
Daniel Nowak - Wrocław University of Science and Technology, Poland
Mitsuhiro Okayasu - Okayama University, Japan
Agung Pambudi - Sebelas Maret University in Indonesia, Indonesia
Richard Pastirčák - University of Žilina, Slovak Republic
Bogdan Piekarski - Zachodniopomorski Uniwersytet Technologiczny, Szczecin, Poland
Bogusław Pisarek - Politechnika Łódzka, Poland
Seyda Polat - Kocaeli University, Turkey
Hartmut Polzin - TU Bergakademie Freiberg, Germany
Alena Pribulova - Technical University of Košice, Slovak Republic
Cezary Rapiejko - Lodz University of Technology, Poland
Arron Rimmer - ADI Treatments, Doranda Way, West Bromwich West Midlands, United Kingdom
Iulian Riposan - Politehnica University of Bucharest, Romania
Ferdynand Romankiewicz - Uniwersytet Zielonogórski, Zielona Góra, Poland
Mario Rosso - Politecnico di Torino, Italy
Jaromír Roučka - Brno University of Technology, Czech Republic
Charnnarong Saikaew - Khon Kaen University, Thailand
Mariola Saternus - Silesian University of Technology, Gliwice, Poland
Karthik Shankar - Amrita Vishwa Vidyapeetham , Amritapuri, India
Vasudev Shinde - Shivaji University, Kolhapur, Rajwada, Ichalkaranji, India
Robert Sika - Politechnika Poznańska, Poznań, Poland
Jerzy Sobczak - AGH University of Science and Technology, Kraków, Poland
Sebastian Sobula - AGH University of Science and Technology, Kraków, Poland
Marek Soiński - Akademia im. Jakuba z Paradyża w Gorzowie Wielkopolskim, Poland
Mateusz Stachowicz - Wroclaw University of Technology, Poland
Marcin Stawarz - Silesian University of Technology, Gliwice, Poland
Andrzej Studnicki - Silesian University of Technology, Gliwice, Poland
Mayur Sutaria - Charotar University of Science and Technology, CHARUSAT, Gujarat, India
Maciej Sułowski - AGH University of Science and Technology, Kraków, Poland
Sutiyoko Sutiyoko - Manufacturing Polytechnic of Ceper, Klaten, Indonesia
Tomasz Szymczak - Lodz University of Technology, Poland
Marek Tkocz - Silesian University of Technology, Gliwice, Poland
Andrzej Trytek - Rzeszow University of Technology, Poland
Jacek Trzaska - Silesian University of Technology, Gliwice, Poland
Robert B Tuttle - Western Michigan University, United States
Muhammet Uludag - Selcuk University, Turkey
Seyed Ebrahim Vahdat - Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
Tomasz Wrobel - Silesian University of Technology, Gliwice, Poland
Ryszard Władysiak - Lodz University of Technology, Poland
Antonin Zadera - Brno University of Technology, Czech Republic
Renata Zapała - AGH University of Science and Technology, Kraków, Poland
Bo Zhang - Hunan University of Technology, China
Xiang Zhang - Wuhan University of Science and Technology, China
Eugeniusz Ziółkowski - AGH University of Science and Technology, Kraków, Poland
Sylwia Żymankowska-Kumon - AGH University of Science and Technology, Kraków, Poland
Andrzej Zyska - Czestochowa University of Technology, Poland



List of Reviewers 2020

Shailee Acharya - S. V. I. T Vasad, India
Mohammad Azadi - Semnan University, Iran
Rafał Babilas - Silesian University of Technology, Gliwice, Poland
Czesław Baron - Silesian University of Technology, Gliwice, Poland
Dariusz Bartocha - Silesian University of Technology, Gliwice, Poland
Emin Bayraktar - Supmeca/LISMMA-Paris, France
Jaroslav Beňo - VSB-Technical University of Ostrava, Czech Republic
Artur Bobrowski - AGH University of Science and Technology, Kraków, Poland
Grzegorz Boczkal - AGH University of Science and Technology, Kraków, Poland
Wojciech Borek - Silesian University of Technology, Gliwice, Poland
Pedro Brito - Pontifical Catholic University of Minas Gerais, Brazil
Marek Bruna - University of Žilina, Slovak Republic
John Campbell - University of Birmingham, United Kingdom
Ganesh Chate - Gogte Institute of Technology, India
L.Q. Chen - Northeastern University, China
Mirosław Cholewa - Silesian University of Technology, Gliwice, Poland
Khanh Dang - Hanoi University of Science and Technology, Viet Nam
Vladislav Deev - Wuhan Textile University, China
Brij Dhindaw - Indian Institute of Technology Bhubaneswar, India
Derya Dispinar - Istanbul Technical University, Turkey
Malwina Dojka - Silesian University of Technology, Gliwice, Poland
Rafał Dojka - ODLEWNIA RAFAMET Sp. z o. o., Kuźnia Raciborska, Poland
Anna Dolata - Silesian University of Technology, Gliwice, Poland
Agnieszka Dulska - Silesian University of Technology, Gliwice, Poland
Tomasz Dyl - Gdynia Maritime University, Poland
Maciej Dyzia - Silesian University of Technology, Gliwice, Poland
Eray Erzi - Istanbul University, Turkey
Katarzyna Gawdzińska - Maritime University of Szczecin, Poland
Sergii Gerasin - Pryazovskyi State Technical University, Ukraine
Dipak Ghosh - Forace Polymers Ltd, India
Marcin Górny - AGH University of Science and Technology, Kraków, Poland
Marcin Gołąbczak - Lodz University of Technology, Poland
Beata Grabowska - AGH University of Science and Technology, Kraków, Poland
Adam Grajcar - Silesian University of Technology, Gliwice, Poland
Grzegorz Gumienny - Technical University of Lodz, Poland
Libor Hlavac - VSB Ostrava, Czech Republic
Mariusz Holtzer - AGH University of Science and Technology, Kraków, Poland
Philippe Jacquet - ECAM, Lyon, France
Jarosław Jakubski - AGH University of Science and Technology, Kraków, Poland
Damian Janicki - Silesian University of Technology, Gliwice, Poland
Witold Janik - Silesian University of Technology, Gliwice, Poland
Robert Jasionowski - Maritime University of Szczecin, Poland
Jan Jezierski - Silesian University of Technology, Gliwice, Poland
Jadwiga Kamińska - Łukasiewicz Research Network – Krakow Institute of Technology, Poland
Justyna Kasinska - Kielce University Technology, Poland
Magdalena Kawalec - Akademia Górniczo-Hutnicza, Kraków, Poland
Angelika Kmita - AGH University of Science and Technology, Kraków, Poland
Ladislav Kolařík -Institute of Engineering Technology CTU in Prague, Czech Republic
Marcin Kondracki - Silesian University of Technology, Gliwice, Poland
Sergey Konovalov - Samara National Research University, Russia
Aleksandra Kozłowska - Silesian University of Technology, Gliwice, Poland
Janusz Krawczyk - AGH University of Science and Technology, Kraków, Poland
Halina Krawiec - AGH University of Science and Technology, Kraków, Poland
Ivana Kroupová - VSB - Technical University of Ostrava, Czech Republic
Agnieszka Kupiec-Sobczak - Cracow University of Technology, Poland
Tomasz Lipiński - University of Warmia and Mazury in Olsztyn, Poland
Aleksander Lisiecki - Silesian University of Technology, Gliwice, Poland
Krzysztof Lukaszkowicz - Silesian University of Technology, Gliwice, Poland
Mariusz Łucarz - AGH University of Science and Technology, Kraków, Poland
Katarzyna Major-Gabryś - AGH University of Science and Technology, Kraków, Poland
Pavlo Maruschak - Ternopil Ivan Pului National Technical University, Ukraine
Sanjay Mohan - Shri Mata Vaishno Devi University, India
Marek Mróz - Politechnika Rzeszowska, Rzeszów, Poland
Sebastian Mróz - Czestochowa University of Technology, Poland
Kostiantyn Mykhalenkov - National Academy of Science of Ukraine, Ukraine
Dawid Myszka - Politechnika Warszawska, Warszawa, Poland
Maciej Nadolski - Czestochowa University of Technology, Częstochowa, Poland
Konstantin Nikitin - Samara State Technical University, Russia
Daniel Pakuła - Silesian University of Technology, Gliwice, Poland


This page uses 'cookies'. Learn more